3. [14 points] In this problem we consider the differential equation $y^{\prime \prime}+k y^{\prime}+16 y=F_{0} \cos (\omega t)$.
a. [7 points] If the solution to the problem is shown in the figure to the right when $F_{0}=1$, what can you say about the values of k and ω ? Solve your equation and explain how your solution would give this graph.
Solution: The simplest guess is that we are seeing
 forcing of an undamped problem, so that $k=0$, at the natural frequency of the system, which is $\omega=\sqrt{16}=4$. In this case we're solving $y^{\prime \prime}+16 y=\cos (4 t)$. The complementary homogeneous solution is $y_{c}=c_{1} \cos (4 t)+c_{2} \sin (4 t)$. The particular solution will be $y_{p}=a t \cos (4 t)+b t \sin (4 t)$, and because there are no odd derivatives in the problem we will find $a=0$. Then $y_{p}^{\prime}=b \sin (4 t)+4 b t \cos (4 t)$ and $y_{p}^{\prime \prime}=8 b \cos (4 t)-16 b t \sin (4 t)$; plugging in, we get $8 b \cos (4 t)-16 b t \sin (4 t)+16 b t \sin (4 t)=\cos (4 t)$, so that $b=\frac{1}{8}$. Thus the general solution is $y=c_{1} \cos (4 t)+c_{2} \sin (4 t)+\frac{1}{8} t \sin (4 t)$, which will have a linearly growing solution as shown in the figure.
b. [7 points] Now suppose that when $F_{0}=0$ the phase portrait for the equation is shown to the right. Which of $k=-4, k=6$, or $k=10$ could we have used in this case? Solve the problem with that value of k and explain how your solution would give this graph.
Solution: We see that the eigenvalues are complex with negative real part. Solving the characteristic equation, we have $\lambda^{2}+k \lambda+16=0$, so that $\lambda=-\frac{k}{2} \pm$ $\frac{1}{2} \sqrt{k^{2}-64}$. For this to have complex roots, $-8<k<$ 8 , and for the real part to be negative, $k>0$. Thus we require that $0<k<8$, and $k=6$ is the only
 option of those provided that works. In this case, the roots of the equation are $\lambda=-3 \pm \frac{1}{2} i \sqrt{28}=-3 \pm i \sqrt{7}$, so that the general solution is $y=c_{1} e^{-3 t} \cos (\sqrt{7} t)+c_{2} e^{-3 t} \sin (\sqrt{7} t)$, which is a decaying oscillatory solution that will have inward spiral trajectories in the phase plane.

Alternately, we could see what the eigenvalues are for each of the indicated values of k : if $k=-4, \lambda^{2}-4 \lambda+16=0$, and $\lambda=2 \pm i \frac{1}{2} \sqrt{48}=2 \pm i 2 \sqrt{3}$, which would growing spiral solutions. If $k=6, \lambda=-3 \pm i \sqrt{7}$, as shown above. If $k=10, \lambda=-5 \pm 6=1,-11$. This will not have oscillatory solutions, and so cannot give the spiral shown.

