5. [14 points] In lab 3 we considered the nonlinear system

$$
N^{\prime}=\gamma(A-N(1+P)), \quad P^{\prime}=P(N-1)
$$

We established that the equilibrium solutions to the system are $(N, P)=(A, 0)$ and $(N, P)=$ $(1, A-1)$, and that near the latter the system is approximated by the linear second order problem $v^{\prime \prime}+\gamma v^{\prime}+\gamma A(A-1) v=0$, where v is the small variation in P from the equilibrium $A-1$.
a. [4 points] Write the linear, second-order problem from above as a system of two linear, first-order equations.

Solution: Let $x=v$ and $y=v^{\prime}$. Then $x^{\prime}=y$ and $y^{\prime}=-\gamma y-\gamma A(A-1) x$, or, if we prefer a matrix formulation, $\binom{x}{y}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -\gamma A(A-1) & -\gamma\end{array}\right)\binom{x}{y}$.
b. [6 points] Suppose that we pick A and γ so that the characteristic equation of the linear second-order equation has a repeated root. Find the solution to the linear second-order equation in this case, and use your solution to write the solution to the system you found in (a). (If you are stuck, assume that $A=2$ and find a nonzero γ to finish the problem with a one point penalty.)

Solution: Note that the characteristic equation of the linear equation is $\lambda^{2}+\gamma \lambda+\gamma A(A-$ $1)=0$, so that $\lambda=-\frac{\gamma}{2} \pm \frac{1}{2} \sqrt{\gamma^{2}-4 \gamma A(A-1)}$. If there is a repeated root, the argument of the square root vanishes, so that we are left with $\lambda=-\frac{\gamma}{2}$, repeated. The general solution is then $v=c_{1} e^{-\gamma t / 2}+c_{2} t e^{-\gamma t / 2}$. This is just the top, x, component of the solution to the system in (a). The bottom component is its derivative, $y=v^{\prime}=-\frac{\gamma}{2} c_{1} e^{-\gamma t / 2}+$ $c_{2}\left(1-\frac{\gamma}{2} t\right) e^{-\gamma t / 2}$. Thus the solution to the system is just $x=c_{1} e^{-\gamma t / 2}+c_{2} t e^{-\gamma t / 2}$, $y=-\frac{\gamma}{2} c_{1} e^{-\gamma t / 2}+c_{2}\left(1-\frac{\gamma}{2} t\right) e^{-\gamma t / 2}$, or, in matrix form,

$$
\binom{x}{y}=c_{1}\binom{1}{-\frac{\gamma}{2}} e^{-\gamma t / 2}+c_{2}\left(\binom{1}{-\frac{\gamma}{2}} t+\binom{0}{1}\right) e^{-\gamma t / 2}
$$

With $A=2$, we have $\lambda^{2}+\gamma \lambda+2 \gamma=0$, so that $\lambda=-\frac{\gamma}{2} \pm \frac{1}{2} \sqrt{\gamma^{2}-8 \gamma}=-\frac{\gamma}{2} \pm$ $\frac{1}{2} \sqrt{\gamma(\gamma-8)}$, so we have a repeated root if $\gamma=8$ (or $\gamma=0$, but we do not consider that). In this case $\lambda=-4$, so that $y=c_{1} e^{-4 t}+c_{2} t e^{-4 t}$.
c. [4 points] In Part B of the lab, we assumed that A was a function of time, that is, $A=A(t)=A_{0}+2 a \cos (\omega t)$. Suppose instead we picked $A(t)=A_{0} \tan (\omega t)$, so that $v^{\prime \prime}+\gamma v^{\prime}+q(t) v=0$, with $q(t)=\gamma A(t)(A(t)-1)$. If we start with $v(0)=0.5, v^{\prime}(0)=0$, what is the longest interval on which the solution to the initial value problem is certain to have a unique solution, and why? (Note that you cannot solve the equation by hand.)

Solution: We know that there will be a unique solution everywhere the coefficients of the equation are continuous. In this case the only problem is where $q(t)=\gamma A_{0} \tan (\omega t)\left(A_{0} \tan (\omega t)-\right.$ 1) is discontinuous, which is where $t=\frac{n \pi}{2 \omega}$ (for any odd integer n). Thus we are certain of a unique solution for $0 \leq t<\frac{\pi}{2 \omega}$.

