6. [15 points] Consider a physical system modeled by the differential equation

$$
x^{\prime \prime}+\gamma x^{\prime}+k x=f(t),
$$

where $x(t)$ is the physical quantity being measured and γ and k are constants.
a. [4 points] If the physical system is underdamped, what can you say about the parameters γ and k ?
Solution: If the system is underdamped, we know that the roots of the characteristic equation are complex. The characteristic equation is $\lambda^{2}+\gamma \lambda+k=0$, so that $\lambda=$ $\frac{1}{2}\left(-\gamma \pm \sqrt{\gamma^{2}-4 k}\right)$, so we know that $\gamma^{2}<4 k$. Because this is a physical system we know that both γ and k should be positive; clearly this condition also requires that $k>0$.
b. [5 points] If $x(0)=x_{0}, x^{\prime}(0)=v_{0}$, and $\mathcal{L}\{f(t)\}=F(s)$, find the transform $X(s)=$ $\mathcal{L}\{x(t)\}$.
Solution: Applying the Laplace transform to both sides of the differential equation, we have

$$
s^{2} X-x_{0} s-v_{0}+\gamma s X-\gamma x_{0}+k X=F(s)
$$

so that

$$
X=\frac{x_{0} s+v_{0}+\gamma x_{0}}{s^{2}+\gamma s+k}+\frac{F(s)}{s^{2}+\gamma s+k} .
$$

c. [6 points] If $f(t)=0$, assuming as in (a) that the system is underdamped, invert your transform from (b) to find $x(t)$. (If you are stuck, assume the equation is $x^{\prime \prime}+\gamma x^{\prime}+\gamma^{2} x=$ 0.)

Solution: If the system is underdamped, then we know that the characteristic polynomial $\lambda^{2}+\gamma \lambda+k=\left(\lambda+\frac{\gamma}{2}\right)^{2}+k-\frac{\gamma^{2}}{4}$. Then, with $b=\sqrt{k-\frac{\gamma^{2}}{4}}$ and $f(t)=0$, we have

$$
\begin{aligned}
x=\mathcal{L}^{-1}\{X(s)\} & =\mathcal{L}^{-1}\left\{\frac{x_{0} s+v_{0}+\gamma x_{0}}{\left(s+\frac{\gamma}{2}\right)^{2}+b^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{x_{0}\left(s+\frac{\gamma}{2}\right)}{\left(s+\frac{\gamma}{2}\right)^{2}+b^{2}}+\frac{v_{0}+\frac{\gamma}{2} x_{0}}{\left(s+\frac{\gamma}{2}\right)^{2}+b^{2}}\right\} \\
& =x_{0} e^{-\gamma t / 2} \cos (b t)+\frac{1}{b}\left(v_{0}+\frac{\gamma}{2} x_{0}\right) e^{-\gamma t / 2} \sin (b t)
\end{aligned}
$$

For the hint, the characteristic polynomial is $p(s)=s^{2}+\gamma s+\gamma^{2}=\left(s+\frac{\gamma}{2}\right)^{2}+\frac{3 \gamma^{2}}{4}$, so that we have the answer above with $b=\frac{\sqrt{3} \gamma}{2}$.

