7. [12 points] In the following we consider two linear, homogeneous, second-order, constant coefficient differential equations, for $y(t)$ and $z(t)$. The phase portrait for the equation for $y(t)$ is shown to the right, and graphs of $z(t)$ for two different initial conditions are shown in the figure to the right, below. Explain in a sentence or two why each of the following cannot be true.
a. [3 points] The equation is $y^{\prime \prime}-3 y^{\prime}+2 y=0$

Solution: In this case the characteristic equation is $\lambda^{2}-3 \lambda+2=(\lambda-2)(\lambda-1)=0$, so that $\lambda=1$ or $\lambda=2$, and solutions must grow away from the
 origin.
b. [3 points] The general solution to the equation is $y=c_{1} e^{-t}+c_{2} e^{-2 t}$.

Solution: Note that if we rewrite the equation as a system, the solution is $\binom{y}{y^{\prime}}=$ $c_{1}\binom{1}{-1} e^{-t}+c_{2}\binom{1}{-2} e^{-2 t}$, so that the straight line solutions have to be $y=-x$ and $y=-2 x$, which is not what we see here (and the direction of fastest collapse is similarly wrong).
c. [3 points] Given some initial conditions, the Laplace transform $Z(s)=\mathcal{L}\{z(t)\}=\frac{2 s+4}{s^{2}+2 s+5}$.
Solution: We see from the form of the Laplace transform that the characteristic polynomial is $p(s)=$ $s^{2}+2 s+5=(s+1)^{2}+4$, so that roots are $s=-1 \pm 2 i$, and solutions should be oscillatory, not exponen-
 tially decaying to zero.
d. [3 points] Written as a system, the equation for $z(t)$ is $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -4 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$. Solution: If this were the case we have $\lambda= \pm 2 i$, so the general solution to the problem is $z=c_{1} \cos (2 t)+c_{2} \sin (2 t)$, which is a pure sinusoid. This is clearly not shown here.

