3. In a lab there are five identical "RLC" circuits in each of which the capacitor charge satisfies $L Q^{\prime \prime}+$ $R Q^{\prime}+C^{-1} Q=E(t)$ with $L=3$ Henries, $R=4$ Ohms, $C=0.5$ Farads. The five circuits are driven by five time-dependent voltage sources $E(t)$ and have different amounts $Q(0)$ of initial charge on the capacitor and different amounts $Q^{\prime}(0)$ of current flowing at time zero, according to this table:

Circuit	Capacitor charge	Voltage source $E(t)$	$Q(0)$	$Q^{\prime}(0)$
1	$Q=Q_{1}(t)$	$E_{1}(t)=1 /\left(1+t^{2}\right)$ Volts	0.25 Coul.	0 Amp.
2	$Q=Q_{2}(t)$	$E_{2}(t)=1 /\left(1+t^{2}\right)$ Volts	0 Coul.	1 Amp.
3	$Q=Q_{3}(t)$	$E_{3}(t) \equiv 6$ Volts	0.25 Coul.	0 Amp.
4	$Q=Q_{4}(t)$	$E_{4}(t)=\left(25+24 t^{2}\right) /\left(1+t^{2}\right)$ Volts	1 Coul.	1 Amp.
5	$Q=Q_{5}(t)$	For $E_{5}(t)$, see part (d)	0 Coul.	0 Amp.

(a) (3 Points.) Express $Q_{4}(t)$ in terms of $Q_{1}(t), Q_{2}(t)$, and/or $Q_{3}(t)$.
\square
(b) (2 Points.) Find $\lim _{t \rightarrow+\infty}\left[Q_{1}(t)-Q_{2}(t)\right]$.
\square
(c) (2 Points.) Would the answer to part (b) be different if $R=0$ Ohms instead? Why or why not?

(d) (3 Points.) Circuit number 5 has a "pulsed" voltage source $E(t)$ that is zero except on the time interval $1<t<6$ seconds, at the beginning of which it is suddenly switched on to 10 Volts, and during which it increases exponentially following $E(t)=10 \mathrm{e}^{b(t-1)}$ for some rate $b \mathrm{sec}^{-1}$. If instantaneously after switching on, $E^{\prime}(1)=30 \mathrm{Volts} / \mathrm{sec}$, use the definition of the Laplace transform to find $\mathscr{L}\{E(t)\}$ (but don't solve for $Q_{5}(t)$).

