6. (4 Points.) Consider the system

\[x' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} x + \begin{pmatrix} g(t) \\ 0 \end{pmatrix}, \quad x(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}, \]

and assume that \(x(t) \) and \(y(t) \) satisfy the initial conditions \(x(0) = 0 \) and \(y(0) = 1 \). Let \(g(t) \) be a function having a Laplace transform denoted \(G(s) \), for \(s \) large enough. Find \(X(s) = \mathcal{L}\{x(t)\} \) and \(Y(s) = \mathcal{L}\{y(t)\} \) in terms of \(G(s) \). Your answers should be in terms of \(s \).