2. (5 Points.) For certain initial conditions, the displacement $x(t)$ of a mass from equilibrium in a mechanical system without any damping or forcing is given by

$$
x(t)=-\sqrt{3} \cos (4 \pi t)+\sin (4 \pi t) .
$$

Write $x(t)$ in phase/amplitude form and use your answer to find the second positive time $t>0$ at which the mass passes equilibrium. Note that for some angles in the first quadrant we have

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos (\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin (\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Solution: the amplitude is

$$
R=\sqrt{\sqrt{3}^{2}+1^{2}}=\sqrt{4}=2
$$

and the phase satisfies $\cos (\delta)=-\sqrt{3} / 2$ and $\sin (\delta)=1 / 2$. So δ is an angle in the second quadrant. Since $\arccos (\cdot)$ returns an angle in the first or second quadrant, we can take $\delta=\arccos (-\sqrt{3} / 2)$. Equivalently, we can relate δ to an angle θ in the first quadrant by $\delta+\theta=\pi$, for which $\cos (\theta)=$ $\cos (\pi-\delta)=-\cos (\delta)=\sqrt{3} / 2$ and $\sin (\theta)=\sin (\pi-\delta)=\sin (\delta)=1 / 2$, so using the given function values, $\theta=\pi / 6$. Hence $\delta=\pi-\pi / 6=5 \pi / 6$. So, the phase/amplitude form is

$$
x(t)=2 \cos (4 \pi t-5 \pi / 6) .
$$

We have $x(t)=0$ whenever $4 \pi t-5 \pi / 6$ is an odd multiple of $\pi / 2$, i.e., whenever $8 t-5 / 3$ is an odd integer, i.e., whenever $8 t=5 / 3$ plus an odd integer. The first positive t corresponds to taking -1 for the odd integer, and the second positive t corresponds to taking 1 for the odd integer. So, the time we seek satisfies $8 t=5 / 3+3 / 3=8 / 3$ or

$$
t=\frac{1}{3} \text {. }
$$

