3. In a lab there are five identical "RLC" circuits in each of which the capacitor charge satisfies $L Q^{\prime \prime}+$ $R Q^{\prime}+C^{-1} Q=E(t)$ with $L=3$ Henries, $R=4$ Ohms, $C=0.5$ Farads. The five circuits are driven by five time-dependent voltage sources $E(t)$ and have different amounts $Q(0)$ of initial charge on the capacitor and different amounts $Q^{\prime}(0)$ of current flowing at time zero, according to this table:

Circuit	Capacitor charge	Voltage source $E(t)$	$Q(0)$	$Q^{\prime}(0)$
1	$Q=Q_{1}(t)$	$E_{1}(t)=1 /\left(1+t^{2}\right)$ Volts	0.25 Coul.	0 Amp.
2	$Q=Q_{2}(t)$	$E_{2}(t)=1 /\left(1+t^{2}\right)$ Volts	0 Coul.	1 Amp.
3	$Q=Q_{3}(t)$	$E_{3}(t) \equiv 6$ Volts	0.25 Coul.	0 Amp.
4	$Q=Q_{4}(t)$	$E_{4}(t)=\left(25+24 t^{2}\right) /\left(1+t^{2}\right)$ Volts	1 Coul.	1 Amp.
5	$Q=Q_{5}(t)$	For $E_{5}(t)$, see part (d)	0 Coul.	0 Amp.

(a) (3 Points.) Express $Q_{4}(t)$ in terms of $Q_{1}(t), Q_{2}(t)$, and/or $Q_{3}(t)$.

Solution: we apply the superposition principle for nonhomogeneous linear ODE, noticing that each equation has exactly the same linear operator $L D^{2}+R D+C^{-1}$ on the left-hand side. So, we write $Q_{4}(t)=a Q_{1}(t)+b Q_{2}(t)+c Q_{3}(t)$ and try to determine a, b, c. The initial condition $Q_{4}(0)=1$ then reads $\frac{1}{4} a+\frac{1}{4} c=1$, and $Q_{4}^{\prime}(0)=1$ reads $b=1$. To fully determine a, c, we require that the differential equation for $Q_{4}(t)$ holds, which means that

$$
\frac{25+24 t^{2}}{1+t^{2}}=E_{4}(t)=a E_{1}(t)+b E_{2}(t)+c E_{3}(t)=\frac{a}{1+t^{2}}+\frac{1}{1+t^{2}}+6 c .
$$

The numerator over the common denominator of $1+t^{2}$ gives us the equation $24\left(1+t^{2}\right)=$ $a+6 c\left(1+t^{2}\right)$, so from the coefficients of t^{2} we get that $c=4$. Taking the constant terms, or going back to $Q_{4}(0)=1$, one finds that $a=0$. So $a=0, b=1$, and $c=4$, and therefore by superposition,

$$
Q_{4}(t)=Q_{2}(t)+4 Q_{3}(t) .
$$

(b) (2 Points.) Find $\lim _{t \rightarrow+\infty}\left[Q_{1}(t)-Q_{2}(t)\right]$.

Solution: The difference $\Delta Q(t):=Q_{1}(t)-Q_{2}(t)$ is a solution of the associated homogeneous equation $L \Delta Q^{\prime \prime}+R \Delta Q^{\prime}+C^{-1} \Delta Q=0$. Since the coefficients are all positive, $\Delta Q(t)$ is a transient response that decays to zero as $t \rightarrow+\infty$. It is not necessary to know what the initial conditions are, nor is it necessary to use the fact that the forcing function is $E(t)=1 /\left(1+t^{2}\right)$. We conclude that

$$
\lim _{t \rightarrow+\infty}\left[Q_{1}(t)-Q_{2}(t)\right]=0 .
$$

(c) (2 Points.) Would the answer to part (b) be different if $R=0$ Ohms instead? Why or why not?

Solution: yes it would be different, because then the difference $Q_{1}(t)-Q_{2}(t)$ satisfies $L \Delta Q^{\prime \prime}+$ $C^{-1} \Delta Q=0$, the general solution of which is simple harmonic motion with natural frequency of vibration $\Omega_{0}=1 / \sqrt{L C}$; this does not decay to zero as $t \rightarrow+\infty$, so in general the limit of $\Delta Q(t)$ as $t \rightarrow+\infty$ does not exist.
(d) (3 Points.) Circuit number 5 has a "pulsed" voltage source $E(t)$ that is zero except on the time interval $1<t<6$ seconds, at the beginning of which it is suddenly switched on to 10 Volts, and during which it increases exponentially following $E(t)=10 \mathrm{e}^{b(t-1)}$ for some rate $b \mathrm{sec}^{-1}$. If instantaneously after switching on, $E^{\prime}(1)=30 \mathrm{Volts} / \mathrm{sec}$, use the definition of the Laplace transform to find $\mathscr{L}\{E(t)\}$ (but don't solve for $Q_{5}(t)$).
Solution: over the time interval $1<t<6$, we have $E(t)=10 \mathrm{e}^{b(t-1)}$, and since this implies that $E^{\prime}(1)=10 b$, we need $b=3 \mathrm{sec}^{-1}$ to match a rate of change of $30 \mathrm{Volts} / \mathrm{sec}$. Then, using the
definition,
$\mathscr{L}\{E(t)\}=\int_{1}^{6} E(t) \mathrm{e}^{-s t} \mathrm{~d} t=\int_{1}^{6} 10 \mathrm{e}^{3(t-1)} \mathrm{e}^{-s t} \mathrm{~d} t=10 \mathrm{e}^{-3} \int_{1}^{6} \mathrm{e}^{(3-s) t} \mathrm{~d} t=10 \mathrm{e}^{-3} \frac{\mathrm{e}^{(3-s) 6}-\mathrm{e}^{(3-s) 1}}{3-s}$.

