4. (5 Points.) Using the method of undetermined coefficients, solve the initial-value problem $y^{\prime \prime}-4 y=$ $12 \mathrm{e}^{-2 t}, y(0)=0, y^{\prime}(0)=1$ for $y(t)$.
Solution: first we solve the associated homogeneous problem: $y^{\prime \prime}-4 y=0$. The characteristic equation reads $\lambda^{2}-4=0$ so $\lambda=2,-2$. The complementary function is therefore $y_{c}(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-2 t}$. Next we find a particular solution using the method of undetermined coefficients. Because $\mathrm{e}^{-2 t}$ is a solution of the associated homogeneous problem, we assume the form $y=Y(t)=A t \mathrm{e}^{-2 t}$. Then, some computation gives:

$$
\begin{gathered}
Y^{\prime}(t)=A \mathrm{e}^{-2 t}-2 A t \mathrm{e}^{-2 t} \\
Y^{\prime \prime}(t)=-4 A \mathrm{e}^{-2 t}+4 A t \mathrm{e}^{-2 t}
\end{gathered}
$$

so substitution gives $\left[-4 A \mathrm{e}^{-2 t}+4 A t \mathrm{e}^{-2 t}\right]-4\left[A t \mathrm{e}^{-2 t}\right]=12 \mathrm{e}^{-2 t}$ so $A=-3$. The general solution is therefore

$$
y=y_{\mathrm{c}}(t)+Y(t)=-3 t \mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-2 t}
$$

Likewise,

$$
y^{\prime}=-3 \mathrm{e}^{-2 t}+6 t \mathrm{e}^{-2 t}+2 c_{1} \mathrm{e}^{2 t}-2 c_{2} \mathrm{e}^{-2 t}
$$

Therefore, $y(0)=c_{1}+c_{2}$ and $y^{\prime}(0)=-3+2 c_{1}-2 c_{2}$. Imposing the initial conditions then gives $c_{1}=1$ and $c_{2}=-1$. The solution is

$$
y(t)=-3 t \mathrm{e}^{-2 t}+\mathrm{e}^{2 t}-\mathrm{e}^{-2 t}
$$

