5. (6 Points.) The differential equation $t^2y'' - 2ty' + 2y = 0$ has the following two solutions: y = t and $y = t^2$. Assuming that t > 0, solve the initial-value problem $t^2y'' - 2ty' + 2y = t^2$, y(1) = 1, y'(1) = 0. Solution: we know that the general solution is $y(t) = y_c(t) + Y(t)$ where $y_c(t) = c_1t + c_2t^2$ is the complementary function (because t and t^2 are linearly independent, in fact $W[t, t^2](t) = t^2$ which is nonzero on the interval $(0, +\infty)$ containing the initial point t = 1). To find a particular solution, we need to use the method of variation of parameters. Putting the problem in standard form (divide by t^2), it reads $y'' - 2t^{-1}y' + 2t^{-2}y = g(t) = 1$. Looking for a particular solution in the form $Y(t) = u_1(t)t + u_2(t)t^2$, we solve the system

$$tu'_{1}(t) + t^{2}u'_{2}(t) = 0$$

$$u'_{1}(t) + 2tu'_{2}(t) = g(t) = 1$$

for $u'_1(t)$ and $u'_2(t)$. We get $u'_1(t) = -1$ and $u'_2(t) = t^{-1}$. Any antiderivatives will do to obtain a particular solution, so we take $u_1(t) = -t$ and $u_2(t) = \ln(|t|)$. So the particular solution we get is $Y(t) = -t^2 + t^2 \ln(|t|)$. The general solution is therefore

$$y(t) = -t^2 + t^2 \ln(|t|) + c_1 t + c_2 t^2,$$

and taking a derivative,

$$y'(t) = -2t + t + 2t\ln(|t|) + c_1 + 2c_2t$$

Therefore, $y(1) = -1 + c_1 + c_2$ and $y'(1) = -1 + c_1 + 2c_2$. Imposing the initial conditions then gives $c_1 = 3$ and $c_2 = -1$, so

$$y(t) = -t^{2} + t^{2} \ln(|t|) + 3t - t^{2}$$

= $-2t^{2} + t^{2} \ln(|t|) + 3t.$

In all of these formulas, we could have written $\ln(t)$ instead of $\ln(|t|)$ because t > 0.