5. (6 Points.) The differential equation $t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0$ has the following two solutions: $y=t$ and $y=t^{2}$. Assuming that $t>0$, solve the initial-value problem $t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=t^{2}, y(1)=1, y^{\prime}(1)=0$. Solution: we know that the general solution is $y(t)=y_{c}(t)+Y(t)$ where $y_{c}(t)=c_{1} t+c_{2} t^{2}$ is the complementary function (because t and t^{2} are linearly independent, in fact $W\left[t, t^{2}\right](t)=t^{2}$ which is nonzero on the interval $(0,+\infty)$ containing the initial point $t=1$). To find a particular solution, we need to use the method of variation of parameters. Putting the problem in standard form (divide by t^{2}), it reads $y^{\prime \prime}-2 t^{-1} y^{\prime}+2 t^{-2} y=g(t)=1$. Looking for a particular solution in the form $Y(t)=$ $u_{1}(t) t+u_{2}(t) t^{2}$, we solve the system

$$
\begin{aligned}
t u_{1}^{\prime}(t)+t^{2} u_{2}^{\prime}(t) & =0 \\
u_{1}^{\prime}(t)+2 t u_{2}^{\prime}(t) & =g(t)=1
\end{aligned}
$$

for $u_{1}^{\prime}(t)$ and $u_{2}^{\prime}(t)$. We get $u_{1}^{\prime}(t)=-1$ and $u_{2}^{\prime}(t)=t^{-1}$. Any antiderivatives will do to obtain a particular solution, so we take $u_{1}(t)=-t$ and $u_{2}(t)=\ln (|t|)$. So the particular solution we get is $Y(t)=-t^{2}+t^{2} \ln (|t|)$. The general solution is therefore

$$
y(t)=-t^{2}+t^{2} \ln (|t|)+c_{1} t+c_{2} t^{2}
$$

and taking a derivative,

$$
y^{\prime}(t)=-2 t+t+2 t \ln (|t|)+c_{1}+2 c_{2} t
$$

Therefore, $y(1)=-1+c_{1}+c_{2}$ and $y^{\prime}(1)=-1+c_{1}+2 c_{2}$. Imposing the initial conditions then gives $c_{1}=3$ and $c_{2}=-1$, so

$$
\begin{aligned}
y(t) & =-t^{2}+t^{2} \ln (|t|)+3 t-t^{2} \\
& =-2 t^{2}+t^{2} \ln (|t|)+3 t
\end{aligned}
$$

In all of these formulas, we could have written $\ln (t)$ instead of $\ln (|t|)$ because $t>0$.

