6. (4 Points.) Consider the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \mathbf{x}+\binom{g(t)}{0}, \quad \mathbf{x}(t)=\binom{x(t)}{y(t)}
$$

and assume that $x(t)$ and $y(t)$ satisfy the initial conditions $x(0)=0$ and $y(0)=1$. Let $g(t)$ be a function having a Laplace transform denoted $G(s)$, for s large enough. Find $X(s)=\mathscr{L}\{x(t)\}$ and $Y(s)=\mathscr{L}\{y(t)\}$ in terms of $G(s)$. Your answers should be in terms of s.
The equations of the system read:

$$
\begin{aligned}
& x^{\prime}=x+2 y+g(t) \\
& y^{\prime}=2 x+y
\end{aligned}
$$

Taking the Laplace transform of both equations using the initial conditions:

$$
\begin{aligned}
s X(s) & =X(s)+2 Y(s)+G(s) \\
s Y(s)-1 & =2 X(s)+Y(s)
\end{aligned}
$$

We rearrange this as a linear system for $X(s)$ and $Y(s)$:

$$
\left(\begin{array}{cc}
1-s & 2 \\
2 & 1-s
\end{array}\right)\binom{X(s)}{Y(s)}=\binom{-G(s)}{-1}
$$

Taking the inverse matrix (using the fact that its determinant is $s^{2}-2 s-3=(s-3)(s+1)$) we have

$$
\binom{X(s)}{Y(s)}=\frac{1}{(s-3)(s+1)}\left(\begin{array}{cc}
1-s & -2 \\
-2 & 1-s
\end{array}\right)\binom{-G(s)}{-1}
$$

So,

$$
X(s)=\frac{(s-1) G(s)+2}{(s-3)(s+1)}, \quad Y(s)=\frac{2 G(s)+s-1}{(s-3)(s+1)} .
$$

