7. (5 Points.) In solving an initial-value problem for a certain linear second-order ODE by Laplace transforms, we arrive at

$$
Y(s)=\frac{s}{s^{3}-3 s^{2}+9 s-27}=\frac{s}{(s-3)\left(s^{2}+9\right)}
$$

What is $y(t)$?
Solution: We set up the partial-fraction expansion

$$
Y(s)=\frac{s}{s^{3}-3 s^{2}+9 s-27}=\frac{A}{s-3}+\frac{B s+C}{s^{2}+9} .
$$

Multiplying through by the common denominator gives $s=A\left(s^{2}+9\right)+(B s+C)(s-3)$. Setting $s=3$ gives $A=\frac{1}{6}$. Then setting $s=0$ gives $0=\frac{9}{6}-3 C$ so $C=\frac{1}{2}$. Matching the coefficients of the terms proportional to s gives $1=-3 B+C=-3 B+\frac{1}{2}$ so $B=-\frac{1}{6}$. Therefore,

$$
Y(s)=\frac{1}{6} \frac{1}{s-3}-\frac{1}{6} \frac{s}{s^{2}+9}+\frac{1}{2} \frac{1}{s^{2}+9} .
$$

Multiplying and dividing the last term by 3 then allows us to use the table of transforms to find

$$
y(t)=\frac{1}{6} \mathrm{e}^{3 t}-\frac{1}{6} \cos (3 t)+\frac{1}{6} \sin (3 t)
$$

