1. [15 points] For this problem note that the general solution to $y^{\prime \prime}+5 y^{\prime}+4 y=0$ is $y=$ $c_{1} e^{-t}+c_{2} e^{-4 t}$. (Note that minimal partial credit will be given on this problem.)
a. [7 points] Find a real-valued general solution to

$$
y^{\prime \prime}+5 y^{\prime}+4 y=3 e^{-4 t} .
$$

Solution: We know the general solution is $y=y_{c}+y_{p}$. We use the Method of Undetermined Coefficients to find y_{p}, guessing $y_{p}=A t e^{-4 t}$, after multiplying our first guess ($y_{p}=A e^{-4 t}$) by t because the forcing term is present in our homogeneous solution. Then $y_{p 2}^{\prime}=A e^{-4 t}-4 A t e^{-4 t}$ and $y_{p 2}^{\prime \prime}=-8 A e^{-4 t}+4 A t e^{-4 t}$, so that on plugging in we get

$$
(-8 A+5 A) e^{-4 t}=3 e^{-4 t},
$$

so that $-3 A=3$, and $A=-1$.
Thus the general solution is

$$
y=c_{1} e^{-t}+c_{2} e^{-4 t}-t e^{-4 t} .
$$

If we use Variation of Parameters, we have $u_{1}^{\prime} e^{-t}+u_{2}^{\prime} e^{-4 t}=0$ and $-u_{1}^{\prime} e^{-t}-4 u_{2}^{\prime} e^{-4 t}=$ $3 e^{-4 t}$. Solving, we find $u_{2}^{\prime}=-1$ and $u_{1}^{\prime}=e^{-3 t}$, so that $u_{1}=-\frac{1}{3} e^{-3 t}$ and $u_{2}=-t$, and
$y_{p}=-\frac{1}{3} e^{-4 t}-t e^{-4 t}$.
b. [8 points] Find the solution to the

$$
y^{\prime \prime}+5 y^{\prime}+4 y=16 t, \quad y(0)=2, \quad y^{\prime}(0)=-2 .
$$

Solution: We know the general solution is $y=y_{c}+y_{p}$. We use the Method of Undetermined Coefficients to find y_{p}, guessing $y_{p}=A+B t$. Plugging in,

$$
5 B+4 A+4 B t=16 t,
$$

so that $B=4$ and $A=-5$. Thus the general solution is $y=c_{1} e^{-t}+c_{2} e^{-4 t}-5+4 t$. Applying the initial conditions, we have

$$
\begin{aligned}
y(0) & =c_{1}+c_{2}-5=2, \quad \text { and } \\
y^{\prime}(0) & =-c_{1}-4 c_{2}+4=-2 .
\end{aligned}
$$

Thus $c_{1}+c_{2}=7$ and $-c_{1}-4 c_{2}=-6$. Adding the two, we have $-3 c_{2}=1$, so $c_{2}=-1 / 3$. Then the first gives $c_{1}=22 / 3$, and our solution is

$$
y=\frac{22}{3} e^{-t}-\frac{1}{3} e^{-4 t}-5+4 t .
$$

We can, of course find y_{p} with Variation of Parameters. Then $u_{1}^{\prime} e^{-t}+u_{2}^{\prime} e^{-4 t}=0$ and $-u_{1}^{\prime} e^{-t}-4 u_{2}^{\prime} e^{-4 t}=16 t$. Solving, we find $u_{2}^{\prime}=-\frac{16}{3} t e^{4 t}$, so that $u_{2}=\left(\frac{1}{3}-\frac{4}{3} t\right) e^{4 t}$ and $u_{1}^{\prime}=\frac{16}{3} t e^{t}$, so that $u_{1}=\frac{16}{3}(-1+t) e^{t}$. Then $y_{p}=-5+4 t$, as before.

