5. [15 points] For each of the following, identify the statement as true or false by circling “True” or “False” as appropriate, and provide a short (one or two sentence) explanation indicating why that answer is correct.

a. [3 points] For the system \(x' = -xy + y^2 \), \(y' = x^2 - xy \), the nonlinear trajectory in the phase plane with \(x(0) = -3 \) and \(y(0) = 0 \) lies on a circle centered on the origin.

 True
 False

b. [3 points] For a linear differential operator \(L = \frac{d^2}{dt^2} + p(t) \frac{d}{dt} + q(t) \), if \(y_1 \) and \(y_2 \) are different functions satisfying \(L[y_1] = L[y_2] = g(t) \neq 0 \), then, for any constants \(c_1 \) and \(c_2 \), \(y = c_1 y_1 - c_2 y_2 \) satisfies \(L[y] = 0 \).

 True
 False

c. [3 points] The solution to a differential equation \(my'' + ky = F(t) \) modeling the motion \(y \) of an undamped mechanical spring system with a periodic external force \(F(t) = F_0 \cos(\omega t) \) can always be written as \(y = A \cos(\omega_0 t - \delta_1) + B \cos(\omega t - \delta_2) \), a sum of two oscillatory terms. (\(A \), \(B \), \(\omega_0 \), \(\delta_1 \) and \(\delta_2 \) are constants.)

 True
 False

d. [3 points] If \(\lambda^2 + p\lambda + q = 0 \) is the characteristic equation of a constant-coefficient linear differential equation \(L[y] = g(t) \), then solving for \(Y(s) = \mathcal{L}\{y(t)\} \) will result in an expression involving a product of \((s^2 + ps + q)^{-1} \) with other terms.

 True
 False

e. [3 points] If \(f(t) \neq 0 \) has Laplace transform \(\mathcal{L}\{f(t)\} = F(s) \) and \(g(t) = \begin{cases} f(t), & 0 < t < c, \\ 0, & t \geq c \end{cases} \), then \(\mathcal{L}\{g(t)\} = (1 - e^{-sc})F(s) \).

 True
 False