- **5.** [15 points] For each of the following, identify the statement as true or false by circling "True" or "False" as appropriate, and provide a short (one or two sentence) explanation indicating why that answer is correct.
 - **a**. [3 points] For the system $x' = -xy + y^2$, $y' = x^2 xy$, the nonlinear trajectory in the phase plane with x(0) = -3 and y(0) = 0 lies on a circle centered on the origin.

True False

b. [3 points] For a linear differential operator $L = \frac{d^2}{dt^2} + p(t)\frac{d}{dt} + q(t)$, if y_1 and y_2 are different functions satisfying $L[y_1] = L[y_2] = g(t) \neq 0$, then, for any constants c_1 and c_2 , $y = c_1y_1 - c_2y_2$ satisfies L[y] = 0.

True False

c. [3 points] The solution to a differential equation my'' + ky = F(t) modeling the motion y of an undamped mechanical spring system with a periodic external force $F(t) = F_0 \cos(\omega t)$ can always be written as $y = A \cos(\omega_0 t - \delta_1) + B \cos(\omega t - \delta_2)$, a sum of two oscillatory terms. (A, B, ω_0 , δ_1 and δ_2 are constants.)

True False

d. [3 points] If $\lambda^2 + p\lambda + q = 0$ is the characteristic equation of a constant-coefficient linear differential equation L[y] = g(t), then solving for $Y(s) = \mathcal{L}\{y(t)\}$ will result in an expression involving a product of $(s^2 + ps + q)^{-1}$ with other terms.

True False

e. [3 points] If $f(t) \neq 0$ has Laplace transform $\mathcal{L}{f(t)} = F(s)$ and $g(t) = \begin{cases} f(t), & 0 < t < c \\ 0, & t \ge c \end{cases}$, then $\mathcal{L}{g(t)} = (1 - e^{-sc})F(s)$. True False