1. [14 points] Find real-valued solutions for each of the following, as indicated. (Note that minimal partial credit will be given on this problem.)
a. $[7$ points $]$ Solve $\frac{1}{3} y^{\prime \prime}+2 y^{\prime}+3 y=2 t, y(0)=0, y^{\prime}(0)=\frac{4}{3}$.

Solution: The algebra may be easier if we first multiply by 3 , obtaining $y^{\prime \prime}+6 y^{\prime}+9 y=6 t$. The characteristic equation for this is $\lambda^{2}+6 \lambda+9=(\lambda+3)^{2}=0$, so $\lambda=-3$ twice, and the homogeneous solution is $y_{c}=c_{1} e^{-3 t}+c_{2} t e^{-3 t}$. To find y_{p} we use the method of undetermined coefficients, guessing $y_{p}=A t+B$. Then, plugging in,

$$
6 A+9 A t+9 B=6 t,
$$

so that $A=\frac{2}{3}$ and $B=-\frac{4}{9}$. The general solution is

$$
y=c_{1} e^{-3 t}+c_{2} t e^{-3 t}+\frac{2}{3} t-\frac{4}{9} .
$$

Applying the initial conditions, we have $y(0)=c_{1}-\frac{4}{9}=0$, so $c_{1}=\frac{4}{9}$, and $y^{\prime}(0)=$ $-3 c_{1}+c_{2}+\frac{2}{3}=c_{2}-\frac{2}{3}=\frac{4}{3}$, so that $c_{2}=2$. Thus

$$
y=\frac{4}{9} e^{-3 t}+2 t e^{-3 t}+\frac{2}{3} t-\frac{4}{9} .
$$

b. [7 points] Find the general solution to $y^{\prime \prime}+2 y^{\prime}+5 y=2 t e^{-t}$.

Solution: The general solution will be $y=y_{c}+y_{p}$, where y_{c} solves the complementary homogenous problem and y_{p} is a particular solutions. For y_{c} we guess $y=e^{\lambda t}$, so that $\lambda^{2}+2 \lambda+5=(\lambda+1)^{2}+4=0$, and $\lambda=-1 \pm 2 i$. Thus $y_{c}=c_{1} e^{-t} \cos (2 t)+c_{2} e^{-t} \sin (2 t)$. For y_{p} we use the method of undetermined coefficients, taking $y_{p}=(A t+B) e^{-t}$. Plugging in, we have

$$
(A t-2 A+B) e^{-t}+2(-A t+A-B) e^{-t}+5(A t+B) e^{-t}=3 t e^{-t}
$$

Collecting terms in e^{-t} and $t e^{-t}$, we have $4 B=0$ and $4 A=2$. Thus $B=0$ and $A=\frac{1}{2}$, and

$$
y=c_{1} e^{-t} \cos (2 t)+c_{2} e^{-t} \sin (2 t)+\frac{1}{2} t e^{-t} .
$$

