3. [14 points] Use Laplace transforms to solve each of the following.
a. [7 points] $y^{\prime \prime}+4 y^{\prime}+4 y=2 e^{-2 t}, y(0)=1, y^{\prime}(0)=0$.

Solution: Taking the Laplace transform of both sides of the equation, we have with $Y=\mathcal{L}\{y\}$,

$$
s^{2} Y-s+4 s Y-4+4 Y=\frac{2}{s+2}, \quad \text { or } \quad Y=\frac{2}{(s+2)^{3}}+\frac{s+4}{(s+2)^{2}}
$$

From transforms 3 and C from the table, we see that the first term in Y will invert as $\mathcal{L}^{-1}\left\{\frac{2}{(s+2)^{3}}\right\}=t^{2} e^{-2 t}$. To do the second, we use partial fractions: $\frac{s+4}{(s+2)^{2}}=\frac{A}{s+2}+\frac{B}{(s+2)^{2}}$. Clearing the denominators, we have $s+4=A(s+2)+B$, so that with $s=-2$ we find $B=2$. Then $s=0$ requires that $A=1$, so that $\mathcal{L}^{-1}\left\{\frac{s+4}{(s+2)^{2}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s+2}+\frac{2}{(s+2)^{2}}\right\}=$ $e^{-2 t}+2 t e^{-2 t}$. Combining this with the first result, we have

$$
y=\mathcal{L}^{-1}\{Y\}=t^{2} e^{-2 t}+e^{-2 t}+2 t e^{-2 t}
$$

b. [7 points $] y^{\prime \prime}+3 y^{\prime}=\left\{\begin{array}{ll}12, & 0 \leq t<2 \\ 0, & t \geq 2\end{array}, y(0)=0, y^{\prime}(0)=0\right.$.

Solution: We want to transform both sides of the equation; the right-hand side we can do by using the definition of the transform, or by noting that the differential equation may be written as $y^{\prime \prime}+3 y^{\prime}=12-12 u_{2}(t)$. Transforming the equation using transform 6 in the table, we have

$$
s^{2} Y+3 s Y=\frac{12}{s}-\frac{12 e^{-2 s}}{s}, \quad \text { so that } \quad Y=\frac{12}{s^{2}(s+3)}-\frac{12 e^{-2 s}}{s^{2}(s+3)}
$$

To find y we need to invert the transform of $\frac{12}{s^{2}(s+3)}$. We decompose this with partial fractions: $\frac{12}{s^{2}(s+3)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+3}$. Clearing the denominators, $12=A s(s+3)+B(s+$ $3)+C s^{2}$. If $s=0, B=4$; if $s=-3, C=\frac{4}{3}$. Then, if $s=-2,12=-2 A+4+\frac{16}{3}$, so that $A=-\frac{4}{3}$. Thus $\mathcal{L}^{-1}\left\{\frac{12}{s^{2}(s+3)}\right\}=\mathcal{L}^{-1}\left\{-\frac{4}{3 s}+\frac{4}{s^{2}}+\frac{4}{3(s+3)}\right\}=-\frac{4}{3}+4 t+\frac{4}{3} e^{-3 t}$, and, using this and transform 6 from the table, we have

$$
y=\mathcal{L}^{-1}\{Y\}=-\frac{4}{3}+4 t+\frac{4}{3} e^{-3 t}-\left(-\frac{4}{3}+4(t-2)+\frac{4}{3} e^{-3(t-2)}\right) u_{2}(t)
$$

