5. [15 points] For each of the following, identify the statement as true or false by circling "True" or "False" as appropriate, and provide a short (one or two sentence) explanation indicating why that answer is correct.
a. [3 points] For the system $x^{\prime}=-x y+y^{2}, y^{\prime}=x^{2}-x y$, the nonlinear trajectory in the phase plane with $x(0)=-3$ and $y(0)=0$ lies on a circle centered on the origin.

True False
Solution: The system gives $\frac{d y}{d x}=\frac{y^{\prime}}{x^{\prime}}=\frac{x(x-y)}{-y(x-y)}=-\frac{x}{y}$. Separating and integrating, we get $y d y=-x d x$, so that $x^{2}+y^{2}=2 c$.
b. [3 points] For a linear differential operator $L=\frac{d^{2}}{d t^{2}}+p(t) \frac{d}{d t}+q(t)$, if y_{1} and y_{2} are different functions satisfying $L\left[y_{1}\right]=L\left[y_{2}\right]=g(t) \neq 0$, then, for any constants c_{1} and c_{2}, $y=c_{1} y_{1}-c_{2} y_{2}$ satisfies $L[y]=0$.

True
False
Solution: Relying on the linearity of the operator,

$$
L[y]=L\left[c_{1} y_{1}-c_{2} y_{2}\right]=c_{1} L\left[y_{1}\right]-c_{2} L\left[y_{2}\right]=c_{1} g(t)-c_{2} g(t)=\left(c_{1}-c_{2}\right) g(t),
$$

which is zero only if $c_{1}-c_{2}=0$.
c. [3 points] The solution to a differential equation $m y^{\prime \prime}+k y=F(t)$ modeling the motion y of an undamped mechanical spring system with a periodic external force $F(t)=F_{0} \cos (\omega t)$ can always be written as $y=A \cos \left(\omega_{0} t-\delta_{1}\right)+B \cos \left(\omega t-\delta_{2}\right)$, a sum of two oscillatory terms. ($A, B, \omega_{0}, \delta_{1}$ and δ_{2} are constants.)

True
False
Solution: This is only true if the forcing frequence ω is not equal to the natural frequency of the system, $\omega_{0}=\sqrt{k / m}$. If $\omega=\omega_{0}$, we will have a growing solution $y=A \cos \left(\omega_{0} t-\right.$ $\left.\delta_{1}\right)+B t \cos \left(\omega_{0}-\delta_{2}\right)$.
d. [3 points] If $\lambda^{2}+p \lambda+q=0$ is the characteristic equation of a constant-coefficient linear differential equation $L[y]=g(t)$, then solving for $Y(s)=\mathcal{L}\{y(t)\}$ will result in an expression involving a product of $\left(s^{2}+p s+q\right)^{-1}$ with other terms.

True False
Solution: The characteristic equation tells us that the differential equation is $L[y]=$ $y^{\prime \prime}+p y^{\prime}+q y=g(t)$. The transform of this is $s^{2} Y-s y(0)-y^{\prime}(0)+p s Y-y(0)+q Y=G(s)$, and solving for Y will give the indicated result.
e. [3 points] If $f(t) \neq 0$ has Laplace transform $\mathcal{L}\{f(t)\}=F(s)$ and $g(t)=\left\{\begin{array}{ll}f(t), & 0<t<c \\ 0, & t \geq c\end{array}\right.$, then $\mathcal{L}\{g(t)\}=\left(1-e^{-s c}\right) F(s)$.

True
False
Solution: The easiest way to see this is to look for $h(t)=\mathcal{L}^{-1}\left\{\left(1-e^{-s c}\right) F(s)\right\}=$ $f(t)-f(t-c) u_{c}(t)$. Then, by definition, $g(t)=\left(1-u_{c}(t)\right) f(t)$, and in general $h(t) \neq g(t)$.

