6. [14 points] In the following, we consider the behavior of solutions to a linear, second-order, constant-coefficient differential equation with a forcing term.
a. [5 points] Write a differential equation of this type that could have the three solution curves given to the right. Explain how you know your answer is correct.
Solution: The constant solution shows that we have a non-zero equilibrium solution, so the forcing term is $g(t)=k$, a constant. Then the two non-constant solutions show an oscillatory transient with decay-
 ing amplitude, so the characteristic equation of the differential equation must have complex roots with a negative real part. Thus any equation of the form $y^{\prime \prime}+a y^{\prime}+b y=k$, where $a>0$ and $a^{2}-4 b<0$ (and, because the equilibrium is positive, $k>0$) will produce the desired result. One such is $y^{\prime \prime}+y^{\prime}+y=1$.
b. [6 points] Now suppose that the general solution to the problem is $y=\left(c_{1}+c_{2} t+t \ln (t)\right) e^{-t}$. What is the differential equation, including the forcing term? Explain.
Solution: Because the problem is linear we know that the general solution has the form $y=y_{c}+y_{p}$, where y_{c} is the solution to the complementary homogeneous problem and y_{p} is a solution to the problem with forcing. Because it is constant-coefficient and second-order, the solution y_{c} has terms of the form $e^{\lambda t}$ or $t e^{\lambda t}$ (where λ may be zero or complex), so the homogeneous solution here must be $y_{c}=c_{1} e^{-t}+c_{2} t e^{-t}$. This requires that $\lambda=-1$, twice, so the characteristic equation is $\lambda^{2}+2 \lambda+1=0$, and the linear differential operator is $L[y]=y^{\prime \prime}+2 y^{\prime}+y$. Then $y_{p}=t \ln (t) e^{-t}$. We can find $g(t)$ by plugging this into $L[y]$; to do this, we calculuate $y_{p}^{\prime}=-t \ln (t) e^{-t}+(\ln (t)+1) e^{-t}$ and $y_{p}^{\prime \prime}=-\left(y_{p}\right)^{\prime}+\frac{1}{t} e^{-t}-(\ln (t)+1) e^{-t}$. Then

$$
\begin{aligned}
L\left[y_{p}\right] & =y_{p}^{\prime \prime}+2 y_{p}^{\prime}+y_{p} \\
& =\left(\frac{1}{t} e^{-t}-(\ln (t)+1) e^{-t}\right)+\left(-t \ln (t) e^{-t}+(\ln (t)+1) e^{-t}\right)+t \ln (t) e^{-t} \\
& =t^{-1} e^{-t}=g(t) .
\end{aligned}
$$

Thus the equation and forcing are $y^{\prime \prime}+2 y^{\prime}+y=t^{-1} e^{-t}$.
c. [3 points] If you were finding, by hand, the general solution given in (b), what method or methods could you use? In these methods, what form do you guess for the solution?

Solution: Because the problem is linear, we know that we will be finding the solution to the complementary homogeneous problem and then finding a particular solution. Because it is constant-coefficient, the former will always be done by finding the solution to the eigenvalue problem obtained by looking for solutions of the form $y=e^{\lambda t}$ (or, $\mathbf{x}=\mathbf{v} e^{\lambda t}$ for the equivalent system of two first-order equations). The forcing term (and particular solution) do not admit use of the method of undertermined coefficients, so we would use variation of parameters to guess $y_{p}=u_{1}(t) e^{-t}+u_{2}(t) t e^{-t}$.

