1. [15 points] Find explicit, real-valued solutions to each of the following, as indicated. For this problem, use Laplace transforms, not some other solution technique.
a. $[8$ points $] y^{\prime \prime}+2 y^{\prime}+y=e^{-t}, y(0)=0, y^{\prime}(0)=1$.

Solution: Applying the forward transform, letting $Y=\mathcal{L}\{y\}$, we have $\left(s^{2}+2 s+1\right) Y-1=$ $\frac{1}{s+1}$, so that

$$
Y=\frac{1}{(s+1)^{2}}+\frac{1}{(s+1)^{3}}
$$

Note that, using rules (2) and (B) from the table, we have $\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}}\right\}=\mathcal{L}^{-1}\left\{-\frac{d}{d s} \frac{1}{(s+1)}\right\}=$ $t e^{-t}$, and $\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{3}}\right\}=\mathcal{L}^{-1}\left\{-\frac{1}{2} \frac{d}{d s} \frac{1}{(s+1)^{2}}\right\}=\frac{1}{2} t^{2} e^{-t}$. Thus,

$$
\begin{aligned}
y & =\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{3}}\right\} \\
& =t e^{-t}+\frac{1}{2} t^{2} e^{-t} .
\end{aligned}
$$

b. $[7$ points $] y^{\prime \prime}+6 y^{\prime}+13 y=0, y(0)=1, y^{\prime}(0)=0$.

Solution: Applying the forward transform, letting $Y=\mathcal{L}\{y\}$, we have $\left(s^{2}+6 s+13\right) Y-$ $s-6=0$, so that

$$
Y=\frac{s+3}{(s+3)^{2}+4}+\frac{3}{(s+3)^{2}+4}
$$

We can invert both of these with rules (4), (5), and (C). We have

$$
\begin{aligned}
y=\mathcal{L}^{-1}\{Y\} & =\mathcal{L}^{-1}\left\{\frac{s+3}{(s+3)^{2}+4}+\frac{3}{(s+3)^{2}+4}\right\} \\
& =e^{-3 t} \cos (2 t)+\frac{3}{2} e^{-3 t} \sin (2 t)
\end{aligned}
$$

