2. [14 points] Fill in the missing portions of each of the following transforms. Briefly explain how you obtain your work.
a. $[7$ points $] \mathcal{L}\left\{\begin{array}{ll}0, & 0 \leq t<1 \\ 1, & 1 \leq t<5 \\ e^{-(t-5)}, & t \geq 5\end{array}\right\}=\frac{1}{s}\left(e^{-s}-e^{-5 s}\right)+\square e^{-5 s} \frac{1}{s+1}$

Solution: Letting f be the indicated funcion and breaking the integral on the piecewise definitions, we have

$$
\mathcal{L}\{f\}=\int_{1}^{5} e^{-s t} d t+\int_{5}^{\infty} e^{-(t-5)} e^{-s t} d t .
$$

The first of these integrals gives the terms provided. The second is

$$
\int_{5}^{\infty} e^{5} e^{-(s+1) t} d t=\left.\lim _{b \rightarrow \infty}\left(-\frac{e^{5}}{s+1}\right) e^{-(s+1) t}\right|_{t=5} ^{t=b}=\frac{e^{5}}{s+1} e^{-5 s-5}=\frac{e^{-5 s}}{s+1}
$$

b. [7 points] $\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)\left(s^{2}+1\right)}\right\}=1-\frac{1}{2} \cos (t)+\frac{-\frac{1}{2} \sin (t)-\frac{1}{2} e^{-t}}{}$

Solution: We can rewrite this with partial fractions:

$$
\frac{1}{s(s+1)\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B}{s+1}+\frac{C s+D}{s^{2}+1} .
$$

The inverse transforms of these will be, in order, $A, B e^{-t}, C \cos (t)$, and $D \sin (t)$. Thus from the provided partial answer we know that $A=1$ and $C=-\frac{1}{2}$. Then, clearing the denominators and using these values, we have

$$
1=(s+1)\left(s^{2}+1\right)+B s\left(s^{2}+1\right)+\left(-\frac{1}{2} s+D\right) s(s+1) .
$$

If $s=-1$, we have $1=-2 B$, so that $B=-\frac{1}{2}$. If $s=1$, we have $1=4-1+\left(-\frac{1}{2}+D\right)(2)=$ $2+2 D$. Thus $D=-\frac{1}{2}$, and we have the indicated result.

