3. [14 points] Find each of the following, as indicated.
a. [7 points] If a function $f(t)$ has the Laplace transform $F(s)=\mathcal{L}\{f(t)\}$, use the integral definition of the Laplace transform to find the transform $\mathcal{L}\left\{\int_{0}^{t} f(x) d x\right\}$ in terms of $F(s)$. (You may assume that $\int_{0}^{\infty} f(x) d x=L$, a finite value.)

Solution: We have, integrating by parts with $u=\int_{0}^{t} f(x) d x$ (so that $u^{\prime}=f(t)$) and $v^{\prime}=e^{-s t}\left(\right.$ so that $\left.v=-\frac{1}{s} e^{-s t}\right)$,

$$
\begin{aligned}
\mathcal{L}\left\{\int_{0}^{T} f(t) d t\right\} & =\int_{0}^{\infty}\left(\int_{0}^{t} f(x) d x\right) e^{-s t} d t \\
& =-\left.\frac{1}{s} \lim _{b \rightarrow \infty}\left(\int_{0}^{t} f(x) d x\right) e^{-s t}\right|_{t=0} ^{t=b}+\frac{1}{s} \int_{0}^{\infty} f(t) e^{-s t} d t \\
& =-\frac{1}{s} \int_{0}^{0} f(x) d x+\lim _{b \rightarrow \infty} \frac{1}{s} L e^{-s b}+\frac{1}{s} F(s)
\end{aligned}
$$

The first term on the right-hand side is an integral over an interval of zero length, and so is zero, and in the limit as $b \rightarrow \infty$, the second vanishes because of the negative exponential $e^{-s b}$. Thus we have $\mathcal{L}\left\{\int_{0}^{t} f(x) d x\right\}=\frac{1}{s} F(s)$.
b. [7 points] Find an explicit expression for $Y=\mathcal{L}\{y\}$ if $y^{\prime \prime \prime}+3 y=t^{2} e^{-4 t}-e^{-2 t} \cos (5 t)$. (Note that you are not asked to solve the differential equation.)

Solution: Because of the linearity of the transform, we can calculate the transform of each term separately. We have $\mathcal{L}\left\{y^{\prime \prime \prime}\right\}=s^{3} Y-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)$ and $\mathcal{L}\{3 y\}=3 Y$. To find $\mathcal{L}\left\{t^{2} e^{-4 t}\right\}$, we note that $\mathcal{L}\left\{e^{-4 t}\right\}=\frac{1}{s+4}$, so that, by rule $(\mathrm{B}), \mathcal{L}\left\{t^{2} e^{-4 t}\right\}=\frac{d^{2}}{d s^{2}} \frac{1}{s+4}=$ $\frac{2}{(s+4)^{3}}$. To find $\mathcal{L}\left\{e^{-2 t} \cos (5 t)\right\}$, we use rule (C) and the transform $\mathcal{L}\{\cos (5 t)\}=\frac{s}{s^{2}+25}$ to get $\mathcal{L}\left\{e^{-2 t} \cos (5 t)\right\}=\frac{s+2}{(s+2)^{2}+25}$. Putting these all together and solving for Y, we have

$$
Y=\frac{s^{2} y(0)+s y^{\prime}(0)+y^{\prime \prime}(0)}{s^{3}+3}+\frac{2}{(s+4)^{3}\left(s^{3}+3\right)}-\frac{s+2}{\left((s+2)^{2}+25\right)\left(s^{3}+3\right)}
$$

