4. [15 points] Find explicit, real-valued solutions for each of the following, as indicated. Do not use Laplace transform techniques on this problem.
a. [8 points] Find the general solution to $y^{\prime \prime}+2 y^{\prime}+4 y=e^{-t}+t^{2}$.

Solution: We first look for the general solution in the form $y=y_{c}+y_{p}$. For y_{c}, the guess $y=e^{r t}$ gives $r^{2}+2 r+4=(r+1)^{2}+3=0$, so that $r=-1 \pm \sqrt{3} i$, and $y_{c}=c_{1} e^{-t} \cos (\sqrt{3} t)+c_{2} e^{-t} \sin (\sqrt{3} t)$.

To find y_{p}, we use the method of undetermined coefficients, looking for each of the forms on the right-hand side separately. For the e^{-t} term, we guess $y=a e^{-t}$, so that $(1-2+4) a=1$, and $a=\frac{1}{3}$. For the t^{2} term, we guess $y=a_{0}+a_{1} t+a_{2} t^{2}$, so that $2 a_{2}+2\left(2 a_{2} t+a_{1}\right)+4\left(a_{2} t^{2}+a_{1} t+a_{0}\right)=t^{2}$. Collecting powers of t, we have $a_{2}=\frac{1}{4}$, $a_{1}=-\frac{1}{4}$, and $a_{0}=0$.

The general solution to the problem is therefore

$$
y=c_{1} e^{-t} \cos (\sqrt{3} t)+c_{2} e^{-t} \sin (\sqrt{3} t)+\frac{1}{3} e^{-t}+\frac{1}{4} t^{2}-\frac{1}{4} t .
$$

b. [7 points] Solve $y^{\prime \prime}+5 y^{\prime}+4 y=3 \cos (2 t), y(0)=0, y^{\prime}(0)=1$

Solution: We look for the general solution as $y=y_{c}+y_{p}$. For y_{c} we have $y=e^{r t}$, and $r^{2}+5 r+4=(r+4)(r+1)=0$, so that $y_{c}=c_{1} e^{-4 t}+c_{2} e^{-t}$.

For y_{p} we use the method of undetermined coefficients guess $y_{p}=a \cos (2 t)+b \sin (2 t)$. Plugging in, we have

$$
-4 a \cos (2 t)-4 b \sin (2 t)-10 a \sin (2 t)+10 b \cos (2 t)+4 a \cos (2 t)+4 b \sin (2 t)=3 \cos (2 t) .
$$

Collecting terms in $\cos (2 t)$ and $\sin (2 t)$, we have $10 b=3$, and $-10 a=0$; thus $a=0$ and $b=\frac{3}{10}$. Our general solution is therefore

$$
y=c_{1} e^{-4 t}+c_{2} e^{-t}+\frac{3}{10} \sin (2 t) .
$$

Applying the initial conditions, we have $y(0)=c_{1}+c_{2}=0$, and $y^{\prime}(0)=-4 c_{1}-c_{2}+\frac{3}{5}=1$. Substituting the first into the second, we have $3 c_{2}=\frac{2}{5}$, so that $c_{2}=\frac{2}{15}$ and $c_{1}=-\frac{2}{15}$. Thus

$$
y=-\frac{2}{15} e^{-4 t}+\frac{2}{15} e^{-t}+\frac{3}{10} \sin (2 t)
$$

