5. [14 points] Consider the operators $T[y]=y y^{\prime \prime}+2 y^{2} y^{\prime}$ and $U[y]=t^{2} y^{\prime \prime}-t y^{\prime}-3 y$.
a. [9 points $]$ Show that T is nonlinear while U is linear.

Solution: We note that

$$
T[c y]=c y\left(c y^{\prime \prime}\right)-2 c^{2} y^{2}\left(c y^{\prime}\right)=c^{2}\left(y y^{\prime \prime}-2 c y^{2} y^{\prime}\right) \neq c T[y]
$$

(because $c T[y]=c\left(y y^{\prime \prime}+2 y^{2} y^{\prime}\right)$). Therefore T is not linear. (Other possible arguments include the calculations $T\left[y_{1}+y_{2}\right] \neq T\left[y_{1}+y_{2}\right]$, and $T\left[c_{1} y_{1}+c_{2} y_{2}\right] \neq c_{1} T\left[y_{1}\right]+c_{2} T\left[y_{2}\right]$.) However,

$$
\begin{aligned}
U\left[c_{1} y_{1}+c_{2} y_{2}\right] & =t^{2}\left(c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}\right)-t\left(c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}\right)-3\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& =c_{1}\left(t^{2} y_{1}^{\prime \prime}-t y_{1}^{\prime}-3 y_{1}\right)+c_{2}\left(t^{2} y_{2}^{\prime \prime}-t y_{s}^{\prime}-3 y_{2}\right) \\
& =c_{1} U\left[y_{1}\right]+c_{2} U\left[y_{2}\right] .
\end{aligned}
$$

Thus U is linear.
Alternately, we said that a linear operator may also be written in the form $L=D^{2}+$ $p(t) D+q(t)$, so that $L[y]=D^{2}[y]+p(t) D[y]+q(t) y$. For T, we have

$$
T[y]=y y^{\prime \prime}+2 y^{2} y^{\prime}=y D^{2}[y]+2 y^{2} D[y]=y\left(D^{2}[y]+2 y D[y]\right)
$$

which is not in the form of a linear operator, while

$$
U[y]=t^{2}\left(D^{2}[y]-t^{-1} D[y]-3 y\right)=t^{2}\left(D^{2}-t^{-1} D-3 t^{-2}\right)[y]
$$

so that the operator $U=t^{2} D^{2}-t D-3$. Note that this isn't in the form of L; it is an easy generalization from that, but isn't quite consistent with our understanding. It's best to make the argument above, or to consider the operator in the context of a differential equation: the equation $U[y]=0$ can be written as $L[y]=0$, with $L=D^{2}-t^{-1} D-3 t^{-2}$, a linear operator.
b. [5 points] Show that $y_{1}=t^{-1}$ and $y_{2}=t^{3}$ constitute a fundamental set of solutions to the equation $U[y]=0$. What is the general solution to $U[y]=0$?
(You may assume that $t>0$.)
Solution: A fundamental solution set to a linear second-order homogeneous equation consists of two linearly independent solutions. Note that $U\left[y_{1}\right]=t^{2}\left(2 t^{-3}\right)-t\left(-t^{-2}\right)-$ $3 t^{-1}=3 t^{-1}-3 t^{-1}=0$, and $U\left[y_{2}\right]=t^{2}(6 t)-t\left(3 t^{2}\right)-3 t^{3}=6 t^{3}-6 t^{3}=0$, so y_{1} and y_{2} are solutions to $U[y]=0$. Then

$$
W\left[y_{1}, y_{2}\right]=\left|\begin{array}{cc}
t^{-1} & t^{3} \\
-t^{-2} & 3 t^{2}
\end{array}\right|=3 t+t=4 t \neq 0
$$

so the solutions are linearly independent. Thus the general solution is $y=c_{1} t^{-1}+c_{2} t^{3}$.

