6. [13 points] Consider the phase portrait shown to the right, which shows the phase portrait for a linear, second-order, constant coefficient, homogeneous differential equation $L[y]=0$.
a. [7 points] Write a differential equation that could give this phase portrait. Explain how you obtain your solution, and why is it correct.
Solution: We note that the phase portrait shows a center, that is, trajectories are simple closed loops. This suggests that the solutions are sines and cosines, so that we should have an equation $y^{\prime \prime}+\omega_{0}^{2} y=0$. Solutions to this are $y_{1}=\cos \left(\omega_{0} t\right)$ and $y_{2}=\sin \left(\omega_{0} t\right)$, so that the phase plane trajectories are given by $\mathbf{x}_{1}=c_{1}\binom{\cos \left(\omega_{0} t\right)}{-\omega_{0} \sin \left(\omega_{0} t\right)}$ and $\mathbf{x}_{2}=c_{2}\binom{\sin \left(\omega_{0} t\right)}{\omega_{0} \cos \left(\omega_{0} t\right)}$. We note

that the vertical stretch of the shown trajectories appears to be twice that of the horizontal, so guess that $\omega_{0}=2$. Our equation is therefore $y^{\prime \prime}+4 y=0$.
b. [6 points] Suppose that we add a forcing term $f(t)=\cos (15 t / 8)$ to the equation, so that we are solving $L[y]=f(t)$. Sketch an approximate solution curve with $y(0)=0, y^{\prime}(0)=1$. Explain why your solution appears as it does.

Solution: Note that the forcing frequency $\omega=15 / 8$ is close to the natural frequency of the system, $\omega_{0}=2$. So we expect to see at least a mild beats phenomenon. This is shown in the graph below.

