7. [15 points] In our lab on lasers, we considered a linearization of the nonlinear model for the population inversion N and light intensity P. A critical point of the nonlinear system is $(N, P)=(1, A-1)$, and linearizing the system near this gives the linear system

$$
u^{\prime}=-\gamma(A u+v), \quad v^{\prime}=(A-1) u,
$$

where γ and A are constants.
a. [5 points] Rewrite this as a single, second-order equation in v.

Solution: Note that, from the second equation, $u=\frac{1}{A-1} v^{\prime}$. Plugging this into the first equation, we have

$$
\frac{1}{A-1} v^{\prime \prime}+\frac{\gamma A}{A-1} v^{\prime}+\gamma v=0,
$$

or $v^{\prime \prime}+\gamma A v^{\prime}+\gamma(A-1) v=0$.
b. [5 points] Suppose that for some α and β your equation from (a) is $v^{\prime \prime}+\alpha v^{\prime}+\beta v=0$. Under what conditions on α and β will the solution for v be underdamped? Write down two real-valued linearly independent solutions to the equation in this case.

Solution: We note that solutions to this equation are $v=e^{r t}$ with $r=-\frac{\alpha}{2} \pm \frac{1}{2} \sqrt{\alpha^{2}-4 \beta}$. This will give underdamping if $\alpha^{2}-4 \beta<0$, that is, if $\alpha^{2}<4 \beta$. In terms of the constants we obtained in (a), this is $\gamma^{2} A^{2}<4 \gamma(A-1)$, or $\gamma<4 \frac{A-1}{A}{ }^{2}$. The two solutions are $y_{1}=e^{-\mu t} \cos (\nu t)$ and $y_{2}=e^{-\mu t} \sin (\nu t)$, where $\mu=\frac{\alpha}{2}=\frac{\gamma A}{2}$ and $\nu=\frac{1}{2} \sqrt{4 \beta-\alpha^{2}}=$ $\frac{1}{2} \sqrt{4 \gamma(A-1)-\gamma^{2} A^{2}}$.
c. [5 points] Now suppose that we force the underdamped equation given in (b) with the periodic forcing term $f(t)=\cos (\omega t)$. Sketch a graph of the steady state solution of the problem. Explain why your graph has the form it does. If ω changes from very small to very large values, how would you expect your sketch to change? Explain.

Solution: The steady state solution will be the response to the forcing, because (as we see in (b)) the non-forced response decays to zero. Because y_{1} and y_{2} do not have the same form as $f(t)$, we know that the steady state (particular) solution will have the form $v_{p}=a \cos (\omega t)+b \sin (\omega t)=R \cos (\omega t-\phi)$, so it will be a simple sinusoid:

If we vary ω, we expect that the frequency of the solution will change, and that its amplitude will also change. A reasonable guess is that the amplitude will initially increase, obtain a local maximum at an ω near $\nu=\frac{1}{2} \sqrt{4 \beta-\alpha^{2}}=\frac{1}{2} \sqrt{4 \gamma(A-1)-\gamma^{2} A^{2}}$, and then decay to zero as ω becomes very large.

