3. [14 points] Suppose that $L[y] = y'' + p(t)y' + q(t)y$. (Note that $L[y]$ here is a differential operator, not the Laplace transform $\mathcal{L}\{y\}$.)

a. [7 points] If $L[t^2] = 2 + 2tp(t) + t^2q(t) = 0$ and $L[t^2 \ln(t)] = (2\ln(t) + 3) + (2t \ln(t) + t)p(t) + t^2 \ln(t)q(t) = 0$, which, if any, of the following functions y are solutions to $L[y] = 0$ on the domain $t > 0$? Which, if any, give a general solution on this domain? Why? (In these expressions, c_1 and c_2 are real constants.)

$y_1 = 5t^2$ $y_2 = 5t^2(1 + 2\ln(t))$ $y_3 = ct^2 + c_2t^2 \ln(t)$
$y_4 = -t^2 \ln(t)$ $y_5 = t^4 \ln(t)$ $y_6 = c_1t^2(1 + \ln(t))$
$y_7 = t^{-2} \ln(t)$ $y_8 = W[t^2, t^2 \ln(t)] = t^3$ $y_9 = c_1(5t^2 - 2c_2 \ln(t))$

b. [7 points] Now suppose that $p(t) = 2$ and $q(t) = 10$, and let $L[y] = y'' + 2y' + 10y = g(t)$. For what $g(t)$ will the steady state solution to this problem be constant? Solve your equation with this $g(t)$ and explain how your solution confirms that your $g(t)$ is correct.