4. [15 points] In lab 2 we considered the van der Pol oscillator, modeled by the equation, \(x'' + \mu(x^2 - 1)x' + x = 0 \). Recall that there is a single critical point for this system, \(x = 0 \), near which we may model the behavior of the oscillator with the linear equation \(x'' - \mu x' + x = 0 \).

a. [5 points] Suppose that \(\mu = -1 \). Find the amplitude of the solution to the linear problem with initial condition \(x(0) = 2, \ x'(0) = 3 \). What is the time after which this amplitude never exceeds some value \(a_0 \)?

b. [5 points] Suppose we force the linear system with an oscillatory input, so that we are considering \(x'' - \mu x' + x = \cos(\omega t) \) (and \(\omega \neq 0 \)). For what values of \(\mu \) will the system have an oscillatory steady-state solution with frequency \(\omega \)?

c. [5 points] Suppose that, for some choice of \(\mu \), the system \(x'' - \mu x' + x = \cos(\omega t) \) has an oscillatory steady-state solution, and that the gain function \(G(\omega) \) for this solution is shown to the right, below. If the steady-state solution to the problem is \(y_{ss} = R \cos(t - \pi/2) \), what are the \(R \) in the solution, and \(\omega \) in the forcing term? Why?