4. [15 points] In lab 2 we considered the van der Pol oscillator, modeled by the equation, $x^{\prime \prime}+$ $\mu\left(x^{2}-1\right) x^{\prime}+x=0$. Recall that there is a single critical point for this system, $x=0$, near which we may model the behavior of the oscillator with the linear equation $x^{\prime \prime}-\mu x^{\prime}+x=0$.
a. [5 points] Suppose that $\mu=-1$. Find the amplitude of the solution to the linear problem with initial condition $x(0)=2, x^{\prime}(0)=3$. What is the time after which this amplitude never exceeds some value a_{0} ?
b. [5 points] Suppose we force the linear system with an oscillatory input, so that we are considering $x^{\prime \prime}-\mu x^{\prime}+x=\cos (\omega t)$ (and $\omega \neq 0$). For what values of μ will the system have an oscillatory steady-state solution with frequency ω ?
c. [5 points] Suppose that, for some choice of μ, the system $x^{\prime \prime}-\mu x^{\prime}+x=\cos (\omega t)$ has an oscillatory steady-state solution, and that the gain function $G(\omega)$ for this solution is shown to the right, below. If the steady-state solution to the problem is $y_{s s}=R \cos (t-\pi / 2)$, what are the R in the solution, and ω in the forcing term? Why?

