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5. [14 points] In each of the following we consider a linear, second order, constant coefficient
operator L, so that L[y] = 0 is a homogenous differential equation. (Note, however, that the
operator L may be different in each of the parts below.) Let y(0) = y0 and y′(0) = v0, where
y0 and v0 are real numbers.

a. [7 points] If the general solution to the equation L[y] = 0 is y = c1e
−3t cos(2t) +

c2e
−3t sin(2t), what is the Laplace transform Y (s) = L{y(t)}?

b. [7 points] Now suppose that we are solving L[y] = k, for some constant k, and that y0 and
v0 are both zero (so that y(0) = y′(0) = 0). If Y (s) = L{y(t)} is Y = k

s(s+3)(s+4) , what
is the differential equation we are solving, and the general solution to the complementary
homogeneous problem? Explain how you know your answer is correct.
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