5. [14 points] In each of the following we consider a linear, second order, constant coefficient operator $L$, so that $L[y]=0$ is a homogenous differential equation. (Note, however, that the operator $L$ may be different in each of the parts below.) Let $y(0)=y_{0}$ and $y^{\prime}(0)=v_{0}$, where $y_{0}$ and $v_{0}$ are real numbers.
a. [7 points] If the general solution to the equation $L[y]=0$ is $y=c_{1} e^{-3 t} \cos (2 t)+$ $c_{2} e^{-3 t} \sin (2 t)$, what is the Laplace transform $Y(s)=\mathcal{L}\{y(t)\} ?$
b. [7 points] Now suppose that we are solving $L[y]=k$, for some constant $k$, and that $y_{0}$ and $v_{0}$ are both zero (so that $y(0)=y^{\prime}(0)=0$ ). If $Y(s)=\mathcal{L}\{y(t)\}$ is $Y=\frac{k}{s(s+3)(s+4)}$, what is the differential equation we are solving, and the general solution to the complementary homogeneous problem? Explain how you know your answer is correct.
