1. [15 points] Find explicit, real-valued solutions to each of the following, as indicated. For this problem, DO NOT use Laplace transforms.
a. [7 points] Find the general solution to $2 U^{\prime \prime}(t)+12 U^{\prime}(t)+16 U(t)=12 e^{4 t}$.

Solution: This problem is nonhomogeneous, linear, and constant-coefficient. The general solution will be $U=U_{c}+U_{p}$, where $U_{c}$ is the general solution to the complementary homogeneous problem. For this we look for a solution $U=e^{\lambda t}$. Plugging in to the homogeneous equation, we have $2 \lambda^{2}+12 \lambda+16=2(\lambda+4)(\lambda+2)=0$. Thus $\lambda=-4$ or $\lambda=-2$, so that $U_{c}$ is given by $U_{c}=c_{1} e^{-4 t}+c_{2} e^{-2 t}$.
Then, to find Up, we use undertermined coefficients and look for a solution of the form $U_{p}=A e^{4 t}$. Plugging into the differential equation, we have $A(2(16)+12(4)+16) e^{4 t}=$ $A(96) e^{4 t}=12 e^{4 t}$, so that $A=\frac{12}{96}=\frac{1}{8}$, and

$$
U=c_{1} e^{-4 t}+c_{2} e^{-2 t}+\frac{1}{8} e^{4 t} .
$$

b. [8 points] Find the solution to the initial value problem $y^{\prime \prime}(t)+6 y^{\prime}(t)+9 y(t)=3 e^{-3 t}$, $y(0)=0, y^{\prime}(0)=1$.
Solution: Again, the general solution will be $y=y_{c}+y_{p}$. For $y_{c}$, the characteristic equation is $\lambda^{2}+6 \lambda+9=(\lambda+3)^{2}=0$, so $\lambda=-3$, twice, and $y_{c}=c_{1} e^{-3 t}+c_{2} t e^{-3 t}$.
For $y_{p}$, we would use the method of undetermined coefficients and guess $y_{p}=a e^{-3 t}$; however, this is part of $y_{c}$, so we must multiply by $t^{2}$ in order for that not to be the case. Thus we guess $y_{p}=a t^{2} e^{-3 t}$. Then $y_{p}^{\prime}=\left(-3 a t^{2}+2 a t\right) e^{-3 t}$, and $y_{p}^{\prime \prime}=\left(9 a t^{2}-6 a t+2 a\right) e^{-3 t}$, so that, plugging in, we have

$$
\begin{aligned}
\left.\left.\left(9 a t^{2}-6 a t+2 a\right) e^{-3 t}+6\left(-3 a t^{2}+2 a t\right) e^{-3 t}\right)+9 a t^{2}\right) e^{-3 t} & =3 e^{-3 t} \\
2 a e^{-3 t} & =3 e^{-3 t},
\end{aligned}
$$

and $y_{p}=\frac{3}{2} t^{2} e^{-3 t}$. The general solution is therefore $y=c_{1} e^{-3 t}+c_{2} t e^{-3 t}+\frac{3}{2} t^{2} e^{-3 t}$. Applying the initial conditions, we have $y(0)=c_{1}=0$ and $y^{\prime}(0)=c_{2}=1$. Thus $y=t e^{-3 t}+\frac{3}{2} t^{2} e^{-3 t}$.

