2. [15 points] Find explicit, real-valued solutions to each of the following, as indicated. For this problem, DO use Laplace transforms.
a. [7 points] Find the solution to the initial value problem $y^{\prime \prime}+4 y^{\prime}+20 y=0, y(0)=1$, $y^{\prime}(0)=5$.

Solution: Taking the Laplace transform of both sides of the equation, we have $\mathcal{L}\left\{y^{\prime \prime}+\right.$ $\left.4 y^{\prime}+20 y\right\}=0$, so that, with $Y=\mathcal{L}\{y\}$,

$$
s^{2} Y-s-5+4(s Y-1)+20 Y=0
$$

so that

$$
Y=\frac{s+9}{s^{2}+4 s+20}=\frac{(s+2)+7}{(s+2)^{2}+16}
$$

Taking the inverse transform, we have

$$
y=\mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^{2}+16}\right\}+\mathcal{L}^{-1}\left\{\frac{7}{(s+2)^{2}+16}\right\}=e^{-2 t} \cos (4 t)+\frac{7}{4} e^{-2 t} \sin (4 t) .
$$

b. [8 points] Find the solution to the initial value problem $y^{\prime \prime}+3 y^{\prime}+2 y=e^{-t}, y(0)=0$, $y^{\prime}(0)=0$.
Solution: Proceding as above, the forward transform gives

$$
s^{2} Y+3 s Y+2 Y=\frac{1}{s+1}
$$

so that

$$
Y=\frac{1}{(s+1)^{2}(s+2)}
$$

To find the inverse transform, we use partial fractions, letting

$$
\frac{1}{(s+1)^{2}(s+2)}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+2} .
$$

Clearing the denominator,

$$
1=A(s+1)(s+2)+B(s+2)+C(s+1)^{2} .
$$

Taking $s=-1$ and $s=-2$, we find $B=1$ and $C=1$. Then, if $s=0,1=2 A+3$, and $A=-1$.

$$
y=\mathcal{L}^{-1}\left\{-\frac{1}{(s+1)}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{(s+2)}\right\}=-e^{-t}+t e^{-t}+e^{-2 t} .
$$

