3. [14 points] Suppose that $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$. (Note that $L[y]$ here is a differential operator, not the Laplace transform $\mathcal{L}\{y\}$.)
a. $[7$ points $]$ If $L\left[t^{2}\right]=2+2 t p(t)+t^{2} q(t)=0$ and $L\left[t^{2} \ln (t)\right]=(2 \ln (t)+3)+(2 t \ln (t)+$ t) $p(t)+t^{2} \ln (t) q(t)=0$, which, if any, of the following functions y are solutions to $L[y]=0$ on the domain $t>0$? Which, if any, give a general solution on this domain? Why? (In these expressions, c_{1} and c_{2} are real constants.)

$$
\begin{array}{lll}
y_{1}=5 t^{2} & y_{2}=5 t^{2}(1+2 \ln (t)) & y_{3}=c_{1} t^{2}+c_{2} t^{2} \ln (t) \\
y_{4}=-t^{2} \ln (t) & y_{5}=t^{4} \ln (t) & y_{6}=c_{1} t^{2}(1+\ln (t)) \\
y_{7}=t^{-2} \ln (t) & y_{8}=W\left[t^{2}, t^{2} \ln (t)\right]=t^{3} & y_{9}=c_{1}\left(5 t^{2}-2 c_{2} \ln (t)\right)
\end{array}
$$

Solution: Note that the Wronskian $W\left[t^{2}, t^{2} \ln (t)\right]$ is correctly given in $y_{8}: W\left[t^{2}, t^{2} \ln (t)\right]=$ $t^{2}(2 t \ln (t)+t)-t^{3} \ln (t)=t^{3}$. Thus these two functions are linearly independent, and a general linear combination of the two will give the general solution. Further, because L is linear, any linear combination of the two will be a solution. Thus all of y_{1}, y_{2}, y_{3}, y_{4}, and y_{6} are solutions. Those solutions with an arbitrary constant multiplying each of linearly independent solutions are general solutions; this is only y_{3}.
b. [7 points] Now suppose that $p(t)=2$ and $q(t)=10$, and let $L[y]=y^{\prime \prime}+2 y^{\prime}+10 y=g(t)$. For what $g(t)$ will the steady state solution to this problem be constant? Solve your equation with this $g(t)$ and explain how your solution confirms that your $g(t)$ is correct.
Solution: We will get a constant steady state whenever $g(t)=k \in \mathbb{R}$. Note that in this case the characteristic equation is $\lambda^{2}+2 \lambda+10=(\lambda+1)^{2}+9=0$, so $\lambda=-1 \pm 3 i$, and $y_{c}=c_{1} e^{-t} \cos (3 t)+c_{2} e^{-t} \sin (3 t)$. The particular solution is $y_{p}=k / 10$. Thus $y=c_{1} e^{-t} \cos (3 t)+c_{2} e^{-t} \sin (3 t)+\frac{k}{10}$, and as $t \rightarrow \infty$ we see that $y_{c} \rightarrow 0$ and $y \rightarrow \frac{k}{10}$, a constant.

