4. [15 points] In lab 2 we considered the van der Pol oscillator, modeled by the equation, $x^{\prime \prime}+$ $\mu\left(x^{2}-1\right) x^{\prime}+x=0$. Recall that there is a single critical point for this system, $x=0$, near which we may model the behavior of the oscillator with the linear equation $x^{\prime \prime}-\mu x^{\prime}+x=0$.
a. [5 points] Suppose that $\mu=-1$. Find the amplitude of the solution to the linear problem with initial condition $x(0)=2, x^{\prime}(0)=3$. What is the time after which this amplitude never exceeds some value a_{0} ?
Solution: If $\mu=-1$, the characteristic equation for the problem is $\lambda^{2}+\lambda+1=0$, so $\lambda=-\frac{1}{2} \pm \frac{1}{2} \sqrt{1-4}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$. The general solution to the problem is therefore $x=c_{1} e^{-t / 2} \cos \left(\frac{\sqrt{3}}{2} t\right)+c_{2} e^{-t / 2} \sin \left(\frac{\sqrt{3}}{2} t\right)$. Applying the initial condition, $x(0)=c_{1}=2$, and $x^{\prime}(0)=-1+\frac{\sqrt{3}}{2} c_{2}=3$, so $c_{2}=8 / \sqrt{3}$. The solution to the initial value problem is $x=2 e^{-t / 2} \cos (\sqrt{3} t)+(8 / \sqrt{3}) e^{-t / 2} \sin (\sqrt{3} t)$.

The amplitude of this solution is $R=\sqrt{4+64 / 3} e^{-t / 2}=\sqrt{76 / 3} e^{-t / 2}$, so this is less than a_{0} when $e^{-t / 2}<a_{0} / \sqrt{76 / 3}$, or, when $t>2 \ln \left(\sqrt{76 / 3} / a_{0}\right)$.
b. [5 points] Suppose we force the linear system with an oscillatory input, so that we are considering $x^{\prime \prime}-\mu x^{\prime}+x=\cos (\omega t)($ and $\omega \neq 0)$. For what values of μ will the system have an oscillatory steady-state solution with frequency ω ?

Solution: Note that the characteristic equation for this problem is $\lambda^{2}-\mu \lambda+1=0$, so that $\lambda=\frac{1}{2} \mu \pm \frac{1}{2} \sqrt{\mu^{2}-4}$. Thus if $\mu>0$ we are guaranteed at least one positive root, and the homogeneous solution will not decay. If $\mu=0$, we have no damping and the solution to the problem will either be $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+R \cos (\omega t-\delta)$ or, if $\omega=2$, a growing solution. In either case we do not have an oscillatory steady-state solution with frequency ω.

If $-2<\mu<0$, the homogeneous solution will be a decaying oscillatory solution, and if $\mu \leq-2$ it will be a decaying exponential (and $t e^{-2 t}$ if $\mu=-2$). In either case the steady-state solution will be $y_{p}=a \cos (\omega t)+b \sin (\omega t)$, and hence be oscillatory with frequency ω.

Thus, we need $\mu<0$.
c. [5 points] Suppose that, for some choice of μ, the system $x^{\prime \prime}-\mu x^{\prime}+x=\cos (\omega t)$ has an oscillatory steady-state solution, and that the gain function $G(\omega)$ for this solution is shown to the right, below. If the steady-state solution to the problem is $y_{s s}=R \cos (t-\pi / 2)$, what are the R in the solution, and ω in the forcing term? Why?
Solution: The steady state solution to the problem has frequency ω, so $\omega=1$. Then, if $\omega=1$, we see from the gain function that $R=1$.

