5. [14 points] In each of the following we consider a linear, second order, constant coefficient operator L, so that $L[y]=0$ is a homogenous differential equation. (Note, however, that the operator L may be different in each of the parts below.) Let $y(0)=y_{0}$ and $y^{\prime}(0)=v_{0}$, where y_{0} and v_{0} are real numbers.
a. [7 points] If the general solution to the equation $L[y]=0$ is $y=c_{1} e^{-3 t} \cos (2 t)+$ $c_{2} e^{-3 t} \sin (2 t)$, what is the Laplace transform $Y(s)=\mathcal{L}\{y(t)\} ?$
Solution: The general solution tells us that the two roots of the characteristic polynomial are $\lambda=-3 \pm 2 i$. Thus the characteristic polynomial is $(\lambda+3)^{2}+4=\lambda^{2}+6 \lambda+13$, and so $L[y]=y^{\prime \prime}+6 y^{\prime}+13 y$. The forward transform of this will be $\mathcal{L}\left\{y^{\prime \prime}+6 y^{\prime}+13 y\right\}=$ $-s y_{0}-v_{0}+s^{2} Y-6 y_{0}+6 s Y+13 Y=0$, and

$$
Y=\frac{s y_{0}+v_{0}+6 y_{0}}{s^{2}+6 s+13}
$$

b. [7 points] Now suppose that we are solving $L[y]=k$, for some constant k, and that y_{0} and v_{0} are both zero (so that $y(0)=y^{\prime}(0)=0$). If $Y(s)=\mathcal{L}\{y(t)\}$ is $Y=\frac{k}{s(s+3)(s+4)}$, what is the differential equation we are solving, and the general solution to the complementary homogeneous problem? Explain how you know your answer is correct.

Solution: Note that $\mathcal{L}\{k\}=\frac{k}{s}$. Therefore the operator L is $L=(D+3)(D+4)$, to get the quadratic term multiplying s in the denominator of Y. That is, $L=D^{2}+7 D+12$, so that $L[y]=y^{\prime \prime}+7 y^{\prime}+12 y$, and the general solution to the problem is $y=c_{1} e^{-3 t}+c_{2} e^{-4 t}$.

