- 6. [15 points] Each of the following concerns a linear, second order, constant coefficient differential equation y'' + py' + qy = 0.
 - **a**. [7 points] If the general solution to the problem is $y = c_1 e^{2t} + c_2 e^{4t}$, sketch a phase portrait for the system.

Solution: In matrix form, the general solution to the system will be $\mathbf{x} = \begin{pmatrix} y \\ y' \end{pmatrix}$. Thus eigenvectors for the system will be $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$, with $\lambda = 2$ and $\lambda = 4$, respectively. We therefore have the phase portrait shown.

- **b.** [8 points] Now suppose that for some real-valued α , we have $p = 2\alpha$ and q = 1, so that we are considering $y'' + 2\alpha y' + y = 0$. For what values of α , if any
 - (i) do all solutions to the differential equation decay to zero?
 - (ii) are there solutions that do not decay to zero?
 - (iii) will the general solution be a decaying sinusoidal function?

Solution: We see that the characteristic polynomial is in this case $\lambda^2 + 2\alpha\lambda + 1 = 0$, so that $\lambda = -\alpha \pm \sqrt{\alpha^2 - 1}$. Thus: (i) The square root can never be larger in magnitude than α , so for all $\alpha > 0$ we will have solutions that decay to zero. (ii) If $\alpha \leq 0$, there will be solutions that do not decay to zero, and, in fact, if $\alpha < 0$ all solutions will diverge to infinity. (iii) If $|\alpha| < 1$, the square root will be imaginary, so that $\lambda = -\alpha \pm i\sqrt{1 - \alpha^2}$. In this case solutions if $0 < \alpha < 1$ we will have decaying sinusoidal solutions.