3. [16 points] Consider a model for interacting populations x_{1} and x_{2} given by

$$
x_{1}^{\prime}=2 x_{1}-\frac{4 x_{1} x_{2}}{3+x_{1}}, \quad x_{2}^{\prime}=-x_{2}+\frac{2 x_{1} x_{2}}{3+x_{1}} .
$$

a. [2 points] What type of interaction do you think there is between these populations (how does the interaction affect each population)? Explain.
b. [4 points] Find all critical points for this system.
c. [6 points] The Jacobian for this system is $J\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}2-\frac{12 x_{2}}{\left(x_{1}+3\right)^{2}} & -\frac{4 x_{1}}{x_{1}+3} \\ \frac{6 x_{2}}{\left(x_{1}+3\right)^{2}} & -1+\frac{2 x_{1}}{x_{1}+3}\end{array}\right)$. Classify each of your critical points from (b) by stability and type, and sketch a phase portrait for each. (This problem part continues on the next page.)

Problem 3, continued. We are considering the system

$$
x_{1}^{\prime}=2 x_{1}-\frac{4 x_{1} x_{2}}{3+x_{1}}, \quad x_{2}^{\prime}=-x_{2}+\frac{2 x_{1} x_{2}}{3+x_{1}} .
$$

c. Continued: we are solving the problem

The Jacobian for this system is $J\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}2-\frac{12 x_{2}}{\left(x_{1}+3\right)^{2}} & -\frac{4 x_{1}}{x_{1}+3} \\ \frac{6 x_{2}}{\left(x_{1}+3\right)^{2}} & -1+\frac{2 x_{1}}{x_{1}+3}\end{array}\right)$. Classify each of your critical points from (b) by stability and type, and sketch a phase portrait for each.
d. [4 points] If the population of x_{1} was initially large and that of x_{2} small, sketch a qualitatively accurate graph of x_{1} and x_{2} as functions of time. What happens to the populations for large times?

