3. [16 points] Consider a model for interacting populations x_{1} and x_{2} given by

$$
x_{1}^{\prime}=2 x_{1}-\frac{4 x_{1} x_{2}}{3+x_{1}}, \quad x_{2}^{\prime}=-x_{2}+\frac{2 x_{1} x_{2}}{3+x_{1}} .
$$

a. [2 points] What type of interaction do you think there is between these populations (how does the interaction affect each population)? Explain.
Solution: We expect that x_{1} is a prey population and x_{2} a predator. The interaction terms are $-\frac{x_{1} x_{2}}{3+x_{1}}$ for x_{1} and $\frac{x_{1} x_{2}}{3+x_{1}}$ for x_{2}. Thus x_{1} is disadvantaged by the interaction, while x_{2} is advantaged. Further, in the absence of x_{1}, the population of x_{2} will exponentially decay to zero.
b. [4 points] Find all critical points for this system.

Solution: Setting derivatives to zero, the second equation gives $x_{2}\left(-1+\frac{2 x_{1}}{3+x_{1}}\right)=0$, so $x_{2}=0$ or $2 x_{1}=3+x_{1}$, so $x_{1}=3$. If $x_{2}=0$, the first equation requires $x_{1}=0$. If $x_{1}=3$, the first equation becomes $0=6-2 x_{2}$, so that $x_{2}=3$. Thus there are two critical points, $(0,0)$ and $(3,3)$.
c. [6 points] The Jacobian for this system is $J\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}2-\frac{12 x_{2}}{\left(x_{1}+3\right)^{2}} & -\frac{4 x_{1}}{x_{1}+3} \\ \frac{6 x_{2}}{\left(x_{1}+3\right)^{2}} & -1+\frac{2 x_{1}}{x_{1}+3}\end{array}\right)$. Classify each of your critical points from (b) by stability and type, and sketch a phase portrait for each. (This problem part continues on the next page.)

Problem 3, continued. We are considering the system

$$
x_{1}^{\prime}=2 x_{1}-\frac{4 x_{1} x_{2}}{3+x_{1}}, \quad x_{2}^{\prime}=-x_{2}+\frac{2 x_{1} x_{2}}{3+x_{1}} .
$$

c. Continued: we are solving the problem

The Jacobian for this system is $J\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}2-\frac{12 x_{2}}{\left(x_{1}+3\right)^{2}} & -\frac{4 x_{1}}{x_{1}+3} \\ \frac{6 x_{2}}{\left(x_{1}+3\right)^{2}} & -1+\frac{2 x_{1}}{x_{1}+3}\end{array}\right)$. Classify each of your critical points from (b) by stability and type, and sketch a phase portrait for each.
Solution: From the given Jacobian, we have at at the critical point $(0,0), J(0,0)=$ $\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)$, so that $\lambda=2,-1$, and we see that the origin is an unstable saddle point.
At $(3,3)$, we have $J(3,3)=\left(\begin{array}{cc}1 & -2 \\ \frac{1}{2} & 0\end{array}\right)$, so that eigenvalues satisfy $\lambda^{2}-\lambda+1=\left(\lambda-\frac{1}{2}\right)^{2}+$ $\frac{3}{4}=0$, and $\lambda=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$. Thus this is unstable spiral source.
(Phase portraits are omitted here, but are as expected.)
d. [4 points] If the population of x_{1} was initially large and that of x_{2} small, sketch a qualitatively accurate graph of x_{1} and x_{2} as functions of time. What happens to the populations for large times?
Solution: Because of the context, we would initially guess that the population of x_{1} will decrease and that of x_{2} will increase, and that the populations will oscillate with decreasing magnitude as they converge to $x_{1}=x_{2}=3$. However, this isn't what our analysis above suggests: because the critical point $(3,3)$ is an unstable spiral, we expect that the trajectory will either move around $(3,3)$ (possibly more than once) before heading out along the x_{1} axis and increasing to (∞, ∞), or will fail to oscillate at all and move to the same limiting behavior.
(The solution curves are graphs of x_{1} and x_{2} against time.)

