5. [12 points] Consider the nonlinear system

$$
x^{\prime}=y, \quad y^{\prime}=-3 x-2 y+r x^{2} .
$$

Four possible phase portraits for this system are shown along the right side of the page.
a. [4 points] If one of the graphs is to match this system, what is the value of the parameter r ? Why?

Solution: We note that critical points for the system are given by $y=0,-3 x-2 y+r x^{2}=0$, or $x(-3+r x)=0$. Thus the critical points are $(0,0)$ and $(3 / r, 0)$. From the phase portraits we know that the critical points are $(0,0)$ and $(1,0)$, so $r=3$.
b. [8 points] Given the value of r you found in (a), which, if any, of the phase portraits could be that for this system? Why?
Solution: This is most easily determined by finding the linear behavior near the critical points. The Jacobian for the system is $J=\left(\begin{array}{cc}0 & 1 \\ -3+6 x & -2\end{array}\right)$, so at $(0,0)$ we have $J(0,0)=\left(\begin{array}{cc}0 & 1 \\ -3 & -2\end{array}\right)$, and at $(1,0), J(1,0)=\left(\begin{array}{cc}0 & 1 \\ 3 & -2\end{array}\right)$. The eigenvalues of the corresponding systems are given by $\lambda^{2}+2 \lambda \pm 3=0$. For $(0,0), \lambda^{2}+2 \lambda+3=(\lambda+1)^{2}+2=0$, so $\lambda=-1 \pm i \sqrt{2}$, and the critical point is a spiral sink. We note also that to the right of $(0,0), u^{\prime}=0$ and $v^{\prime}<0$, so rotation is clockwise.
For $(1,0), \lambda^{2}+2 \lambda-3=(\lambda+3)(\lambda-1)=0$, so that $\lambda=-3$ and $\lambda=1$, and the point is a saddle point. We note also that when $\lambda=-3, \mathbf{v}=\binom{1}{-3}$ and when $\lambda=1, \mathbf{v}=\binom{1}{1}$. Thus phase portrait 3 could be correct.

Portrait 1:

Portrait 2:

Portrait 4:

