3. [12 points] For parts (a) and (b), identify each as true or false, and give a short mathematical calculation, with explanation, justifying your answer. For part (c) the statement is false. Explain why.
a. [4 points] If $L$ is a linear second-order differential operator, $y_{1}$ and $y_{2}$ are non-zero functions for which $L\left[y_{1}\right]=L\left[y_{2}\right]=0$, and $y_{3}$ is a function for which $L\left[y_{3}\right]=\frac{3}{2+t^{2}}$, then for any $c_{1}, c_{2}$, and $c_{3}, y=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}$ solves $L[y]=\frac{3}{2+t^{2}}$.

> True

False
b. [4 points] If $L$ is a linear second-order differential operator with continuous coefficients, and $y_{1}$ and $y_{2}$ are non-zero functions satisfying $L[y]=0, y_{1}(0)=y_{2}^{\prime}(0)=0$ and $y_{1}^{\prime}(0)=$ $y_{2}(0)=1$, then a general solution to $L[y]=0$ is given by $y=c_{1} y_{1}+c_{2} y_{2}$.

True
False
c. [4 points] Suppose $\mathbf{A}$ is a real-valued $3 \times 3$ matrix, and that the three curves shown to the right are the component plots of a solution to $\mathbf{x}^{\prime}=\mathbf{A x}$, as indicated. Explain why the statement "eigenvalues of A must be complex-valued" is false.


