3. [12 points] For parts (a) and (b), identify each as true or false, and give a short mathematical calculation, with explanation, justifying your answer. For part (c) the statement is false. Explain why.

a. [4 points] If \(L \) is a linear second-order differential operator, \(y_1 \) and \(y_2 \) are non-zero functions for which \(L[y_1] = L[y_2] = 0 \), and \(y_3 \) is a function for which \(L[y_3] = \frac{3}{2 + t^2} \), then for any \(c_1, c_2, \) and \(c_3 \), \(y = c_1 y_1 + c_2 y_2 + c_3 y_3 \) solves \(L[y] = \frac{3}{2 + t^2} \).

True False

b. [4 points] If \(L \) is a linear second-order differential operator with continuous coefficients, and \(y_1 \) and \(y_2 \) are non-zero functions satisfying \(L[y] = 0 \), \(y_1(0) = y_2(0) = 0 \) and \(y_1'(0) = y_2(0) = 1 \), then a general solution to \(L[y] = 0 \) is given by \(y = c_1 y_1 + c_2 y_2 \).

True False

c. [4 points] Suppose \(A \) is a real-valued \(3 \times 3 \) matrix, and that the three curves shown to the right are the component plots of a solution to \(x' = Ax \), as indicated. Explain why the statement “eigenvalues of \(A \) must be complex-valued” is false.