8. [12 points] Suppose that for some nonlinear second-order differential equation $y^{\prime \prime}=f(y)$ we can write an equivalent system of two first-order differential equations $x_{1}^{\prime}=F\left(x_{1}, x_{2}\right)$, $x_{2}^{\prime}=G\left(x_{1}, x_{2}\right)$. Critical points of the latter are $\mathbf{x}_{0}=(0,0)$ and $\mathbf{x}_{1}=(1,0)$. The Jacobian at these points is $\mathbf{J}\left(\mathbf{x}_{0}\right)=\left(\begin{array}{cc}0 & 1 \\ -3 & -2\end{array}\right)$ and $\mathbf{J}\left(\mathbf{x}_{1}\right)=\left(\begin{array}{cc}0 & 1 \\ 3 & -2\end{array}\right)$.
a. [8 points] Sketch a phase portrait for the nonlinear system.
b. [4 points] Based on your phase portrait, sketch a qualitatively accurate graph of y as a function of t if we start with the initial condition $y(0)=0, y^{\prime}(0)=1$.
