8. [12 points] Suppose that for some nonlinear second-order differential equation $y^{\prime \prime}=f(y)$ we can write an equivalent system of two first-order differential equations $x_{1}^{\prime}=F\left(x_{1}, x_{2}\right)$, $x_{2}^{\prime}=G\left(x_{1}, x_{2}\right)$. Critical points of the latter are $\mathbf{x}_{0}=(0,0)$ and $\mathbf{x}_{1}=(1,0)$. The Jacobian at these points is $\mathbf{J}\left(\mathbf{x}_{0}\right)=\left(\begin{array}{cc}0 & 1 \\ -3 & -2\end{array}\right)$ and $\mathbf{J}\left(\mathbf{x}_{1}\right)=\left(\begin{array}{cc}0 & 1 \\ 3 & -2\end{array}\right)$.
a. [8 points] Sketch a phase portrait for the nonlinear system.

Solution: At \mathbf{x}_{0} the Jacobian has eigenvalues given by $\lambda^{2}+2 \lambda+3=(\lambda+1)^{2}+2=0$, so that $\lambda=-1 \pm i \sqrt{2}$, and \mathbf{x}_{0} is a stable spiral point. Note that (considering the point $(1,0)$, where the derivatives on a trajectory are $(0,-3))$ the spiral moves in a clockwise direction.
At \mathbf{x}_{1}, the Jacobian has eigenvalues given by $\lambda^{2}+2 \lambda-3=(\lambda+1)^{2}-4=0$, so $\lambda=-3$ or $\lambda=1$. If $\lambda=-3, \mathbf{v}=\left(\begin{array}{ll}1 & -3\end{array}\right)^{T}$, and if $\lambda=1, \mathbf{v}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$.
Plotting these and adding the expected trajectories gives the phase portrait below.

b. [4 points] Based on your phase portrait, sketch a qualitatively accurate graph of y as a function of t if we start with the initial condition $y(0)=0, y^{\prime}(0)=1$.
Solution: From the phase portrait, we see that a trajectory starting at $(0,1)$ should spiral in to the origin. Thus we know that $y(0)=0$ and $y^{\prime}(0)=1$, and that y must be a decaying sinusoidal function. Thus we have a graph like that shown below.

