1. [12 points] Suppose we are solving the linear system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\binom{0}{8}$.
a. [4 points] If $\mathbf{A}=\left(\begin{array}{cc}-3 & 1 \\ 1 & -3\end{array}\right)$, find all critical points for the system.
b. [5 points] If the eigenvalues and eigenvectors of \mathbf{A} are $\lambda_{1,2}=-4,-2$ with $\mathbf{v}_{1}=\binom{-1}{1}$ and $\mathbf{v}_{2}=\binom{1}{1}$, sketch a phase portrait for the system.
c. [3 points] For a different \mathbf{A}, could a solution to the system be $x=e^{-3 t} \sin (t), y=$ $e^{-3 t} \cos (t)$? Explain.
