3. [12 points] In each of the following we consider a first order differential equation $y^{\prime}=f(t, y)$. In these, the functions $f(t, y)$ and $g(t, y)$ are different functions.
a. [6 points] The direction field for the equation $y^{\prime}=$ $f(t, y)$ is shown to the right. For each of the following, explain if the statement is true, false, or if you cannot tell.
(1) The equation is autonomous, that is, $f(t, y)$ is actually only a function of y.
(2) The equation is linear.
(3) The initial value problem $y^{\prime}=f(t, y), y(0)=y_{0}$ has a unique solution for all y_{0} between -2 and 2 .

b. [6 points] Let $y^{\prime}=g(t, y)=y\left(y^{3}-a^{3}\right)$, where a is a real number. Identify all a for which it is true both there is a critical point other than $y=0$, and that $y=0$ is stable. Be sure it is clear how you arrive at your conclusion. Draw a phase line for this situation, or explain why it is impossible.
