1. [12 points] Suppose we are solving the linear system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\binom{0}{8}$.
a. [4 points] If $\mathbf{A}=\left(\begin{array}{cc}-3 & 1 \\ 1 & -3\end{array}\right)$, find all critical points for the system.

Solution: These are where \mathbf{x} is a constant, so that, with $\mathbf{x}=\left(\begin{array}{ll}x & y\end{array}\right)^{T},-3 x+y=0$ and $x-3 y=-8$. Thus $-8 x=-8$, and $x=1$, so that $y=3$. The only critical point is $(1,3)$.
b. [5 points] If the eigenvalues and eigenvectors of \mathbf{A} are $\lambda_{1,2}=-4,-2$ with $\mathbf{v}_{1}=\binom{-1}{1}$ and $\mathbf{v}_{2}=\binom{1}{1}$, sketch a phase portrait for the system.
Solution: From our work in (a) we know that the critical point for this system is $\mathbf{x}_{c}=(1,3)$. Then, either by letting $\mathbf{x}=\mathbf{x}_{c}+\mathbf{u}$ (so that $\mathbf{u}^{\prime}=\mathbf{A u}$) or by noting that the general solution is $\mathbf{x}=\mathbf{x}_{c}+\mathbf{x}_{p}=\mathbf{u}+\mathbf{x}_{c}$, we know that the phase portrait for the homogeneous system $\mathbf{u}^{\prime}=\mathbf{A u}$ will be centered on \mathbf{x}_{c}.

The phase portrait there will have two straight line solutions that correspond to the eigenvectors, with solutions converging to \mathbf{x}_{c}. The eigenvector associated with $\mathbf{v}_{1}^{T}=$ $\left(\begin{array}{ll}-1 & 1\end{array}\right)$ is much smaller (more negative) than the other, so trajectories will collapse in this direction first, and then converge to the critical point along $\mathbf{v}_{2}^{T}=\left(\begin{array}{ll}1 & 1\end{array}\right)$, giving the phase portrait below.

c. [3 points] For a different \mathbf{A}, could a solution to the system be $x=e^{-3 t} \sin (t), y=$ $e^{-3 t} \cos (t)$? Explain.
Solution: This is not possible, because of the shift in the critical point induced by the inhomogeneity. If we had $x=e^{-3 t} \sin (t)+1, y=e^{-3 t} \cos (t)+3$, following the logic given in the first paragraph in the solution for part (b), it could be the solution for a different matrix \mathbf{A}.

