3. [12 points] In each of the following we consider a first order differential equation $y^{\prime}=f(t, y)$. In these, the functions $f(t, y)$ and $g(t, y)$ are different functions.
a. [6 points] The direction field for the equation $y^{\prime}=$ $f(t, y)$ is shown to the right. For each of the following, explain if the statement is true, false, or if you cannot tell.
(1) The equation is autonomous, that is, $f(t, y)$ is actually only a function of y.
(2) The equation is linear.
(3) The initial value problem $y^{\prime}=f(t, y), y(0)=y_{0}$ has a unique solution for all y_{0} between -2 and 2 .

Solution: (1) The equation is not autonomous,
 because the derivative y^{\prime} depends on t
(2) The equation is not linear: if it where, we would have $y^{\prime}=-p(t) y+q(t)$, and for fixed t the could be only one critical point (which is not true; for example, along $t=2$ we have critical points at $y=0$ and $y=2$).
(3) There are no points $\left(0, y_{0}\right)$ at which the function value (slope shown in the direction field) is not continuously changing from the previous value, and the change (derivative f_{y}) is similarly continuous, so there should be a unique solution for all of these points.
b. [6 points] Let $y^{\prime}=g(t, y)=y\left(y^{3}-a^{3}\right)$, where a is a real number. Identify all a for which it is true both there is a critical point other than $y=0$, and that $y=0$ is stable. Be sure it is clear how you arrive at your conclusion. Draw a phase line for this situation, or explain why it is impossible.

Solution: If $a=0$, we have $y^{\prime}=y^{4}$, and the only critical point is $y=0$. Note that in this case $y^{\prime}>0$ for all $y \neq 0$, so the critical point is unstable (or, if one likes the term, semi-stable). If $a \neq 0$, there are two critical points, $y=0$ and $y=a$. If $a<0$, the equation is $y^{\prime}=y\left(y^{3}+|a|^{3}\right)$. For $y>0, y^{\prime}>0$; for $-|a|<y<0, y^{\prime}<0$, and for $y<-|a| y^{\prime}>0$. Thus when $a<0$, the critical point $y=0$ is unstable and $y=-|a|$ is stable. Similarly, if $a>0, y^{\prime}>0$ when $y<0 ; y^{\prime}<0$ when $0<y<a$; and $y^{\prime}>0$ when $y>a$. Thus $y=0$ is stable and $y=a$ is unstable. The values of a we want are $a>0$. The phase line is shown below.

