6. [12 points] Consider the nonlinear system

$$
x^{\prime}=1-y, \quad y^{\prime}=2-2 y+3 \sin (x) .
$$

Sketch a qualitatively accurate phase portrait showing representative trajectories, by doing appropriate linearization and local analysis. Use your phase portrait to predict the behavior of a trajectory starting at $x(0)=\pi, y(0)=0$.
Solution: To sketch the phase portrait, we first find critical points. Requiring $x^{\prime}=0=1-y$, we have $y=1$. Then $y^{\prime}=0=2-2(1)+3 \sin (x)$, so $x=n \pi$, for any integer n. To determine the linear behavior at each of the critical points $(n \pi, 1)$, we find the Jacobian to tell us the coefficient matrices for the linear systems. We have $J(x, y)=\left(\begin{array}{cc}0 & -1 \\ 3 \cos (x) & -2\end{array}\right)$. Thus, at $(n \pi, 1)$ with n even and odd, the coefficient matrices are, respectively,

$$
J_{2 n}=\left(\begin{array}{ll}
0 & -1 \\
3 & -2
\end{array}\right) \quad \text { and } \quad J_{2 n+1}=\left(\begin{array}{cc}
0 & -1 \\
-3 & -2
\end{array}\right)
$$

At $x=n \pi, n$ even, eigenvalues of the coefficient matrix satisfy $\lambda^{2}+2 \lambda+3=(\lambda+1)^{2}+2=0$, so $\lambda=-1 \pm i \sqrt{2}$. Thus at these critical points we have a spiral sink. Further, starting from $(1,0)$ then gives $\left(x^{\prime}, y^{\prime}\right)=(0,3)$, so motion is counter-clockwise around the critical points.

At $x=n \pi, n$ odd, eigenvalues of the coefficient matrix satisfy $\lambda^{2}+2 \lambda-3=(\lambda+3)(\lambda-1)=$ 0 , so $\lambda=-3$ or $\lambda=1$, and these are unstable saddle points. The eigenvectors associated with the eigenvalues are, respectively, $\mathbf{v}_{-3}=\binom{1}{3}$ and $\mathbf{v}_{1}=\binom{1}{-1}$.

Putting these together, we have the phase portrait shown below.

From this, we see that an initial condition $(\pi, 0)$ will follow the saddle trajectory below the critical point ($\pi, 1$) up and to the right, then down, and will likely spiral in to either the critical point $(2 \pi, 1)$. This gives the dashed trajectory shown below.

