1. [12 points] Consider the system of differential equations $\mathbf{x}^{\prime}=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 3 & -4\end{array}\right) \mathbf{x}$.
a. [6 points] Find the general solution to this system. ${ }^{1}$
b. [6 points] Now suppose that we consider only initial conditions in the $y z$-plane (that is, we take $\mathbf{x}(0)=\left(\begin{array}{c}0 \\ y_{0} \\ z_{0}\end{array}\right)$. Sketch the phase portrait for these initial conditions, in the $y z$-plane.
[^0]
[^0]: ${ }^{1} \operatorname{Possibly}$ useful: $\operatorname{det}\left(\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & c \\ 0 & d & e\end{array}\right)\right)=a(b e-c d)$.

