4. [12 points] Consider the system of differential equations given by $\mathbf{x}^{\prime}=\mathbf{A x}$, where \mathbf{A} is a real-valued 2×2 matrix and $\mathbf{x}=\binom{x_{1}}{x_{2}}$.
a. [6 points] Suppose that the eigenvalues and eigenvectors of \mathbf{A} are $\lambda=-1 \pm i$, with $\mathbf{v}=\binom{2 \pm i}{1}$. If \mathbf{x} solves $\mathbf{x}(0)=\binom{1}{0}$, sketch the trajectory for \mathbf{x} in the phase plane.
b. [6 points] Suppose that eigenvalues and eigenvectors of \mathbf{A} are $\lambda_{1}=1$ and $\lambda_{2}=2$, with $\mathbf{v}_{1}=\binom{1}{2}$ and $\mathbf{v}_{2}=\binom{-2}{1}$. If $\mathbf{x}(0)=\binom{0}{-1}$, as $t \rightarrow \infty$, which of the following is most correct, and why? (i) $x_{2} \approx 2 x_{1}$; (ii) $x_{2} \approx-\frac{1}{2} x_{1}$; (iii) $x_{2} \approx-\frac{1}{2} x_{1}-1$; (iv) $x_{2} \approx-\frac{1}{2} x_{1}-k$, with $k>1$.
