5. [12 points] In lab 6 we considered the Fitzhugh-Nagumo model for the behavior of a neuron,

$$
v^{\prime}=v-\frac{1}{3} v^{3}-w+I_{e x t}, \quad \tau w^{\prime}=v+a-b w
$$

In this problem we analyze this with the parameters $\tau=1, a=\frac{1}{3}$, and $b=1$.
a. [3 points] Find the v - and w-nullclines, and show that there is a single critical point $\left(v_{c}, w_{c}\right)$ in this case. Find the critical point in terms of the externally applied voltage $I_{\text {ext }}$.
b. [3 points] Linearize the system at the critical point (write your linearization in terms of v_{c} and w_{c}-do not plug in the values you found for v_{c} and w_{c}). How is the solution to your linearized system related to the solution of the original nonlinear system?
c. [6 points] Show that the critical point is in this case is always stable. Determine any values of v_{c} or w_{c} at which the behavior at the critical point changes. Explain how this result is different from that which you saw in lab.

