6. [12 points] Consider the nonlinear system

$$
x^{\prime}=3 x-y-x^{2}, \quad y^{\prime}=-\alpha+x-y
$$

where α is a real-valued parameter.
a. [4 points] Find all critical points for the system, and show that for $\alpha>-1$ there are two critical points, if $\alpha=-1$ there is one, and if $\alpha<-1$ there are none.
b. [8 points] Let $\alpha=0$: then the system has two critical points, (0,0) and (2,2). Sketch a phase portrait for the nonlinear system by linearizing at critical points and determining the resulting behavior in the phase plane.

