1. [12 points] Consider the system of differential equations $\mathbf{x}^{\prime}=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 3 & -4\end{array}\right) \mathbf{x}$.
a. [6 points] Find the general solution to this system. ${ }^{1}$

Solution: Finding the eigenvalues of the coefficient matrix, we have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=$ $(-2-\lambda)((1-\lambda)(-4-\lambda)+6)=(-2-\lambda)\left(\lambda^{2}+3 \lambda+2\right)=(-2-\lambda)(\lambda+2)(\lambda+1)=0$, so that $\lambda=-1$ or $\lambda=-2$ (repeated). Then, if $\lambda=-1$, we have for the eigenvector $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 3 & -3\end{array}\right) \mathbf{v}=\mathbf{0}$, so that $\mathbf{v}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. If $\lambda=-2,\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 3 & -2\end{array}\right) \mathbf{v}=\mathbf{0}$, so that we may take $\mathbf{v}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ or $\mathbf{v}=\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)$. Thus the general solution is

$$
\mathbf{x}=c_{1}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) e^{-t}+c_{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{-2 t}+c_{3}\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right) e^{-2 t}
$$

b. [6 points] Now suppose that we consider only initial conditions in the $y z$-plane (that is, we take $\mathbf{x}(0)=\left(\begin{array}{c}0 \\ y_{0} \\ z_{0}\end{array}\right)$). Sketch the phase portrait for these initial conditions, in the $y z$-plane.
Solution: If we are restricted to the $y z$-plane, we have only the first and last terms in the general solution,

$$
\mathbf{x}=c_{1}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) e^{-t}+c_{3}\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right) e^{-2 t}
$$

so that in the $y z$-plane, we have

$$
\binom{y}{z}=c_{1}\binom{1}{1} e^{-t}+c_{3}\binom{2}{3} e^{-2 t}
$$

We can sketch the phase portrait in this plane by drawing in the eigenvectors $z=y$ and $z=\frac{3}{2} y$ and the corresponding trajectories, which collaps to the first eigenvector and then to the origin. This is shown below.

${ }^{1} \operatorname{Possibly}$ useful: $\operatorname{det}\left(\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & c \\ 0 & d & e\end{array}\right)\right)=a(b e-c d)$.

